

ibm.com/redbooks

IBM Informix
Developer’s Handbook

Whei-Jen Chen
Krishna Doddi

Manoj Ghogale
David Jay

Javier Sagrera

Learn application development with
supported APIs, drivers, and interfaces

Understand Informix supported
programming environments

Follow practical examples to
develop an Informix application

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Informix Developer’s Handbook

October 2010

International Technical Support Organization

SG24-7884-00

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2010)

This edition applies to IBM Informix Version 11.5.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xi

Acknowledgements . xiii
Now you can become a published author, too! . xiii
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Chapter 1. Introduction to IBM Informix . 1
1.1 Server options . 2

1.1.1 Informix servers. 2
1.2 Informix tools for developers . 9

1.2.1 Informix Connect . 9
1.2.2 Informix Client Software Development Kit. 9
1.2.3 4GL . 15
1.2.4 Ruby on Rails . 15
1.2.5 Informix DataBlade Developers Kit . 15
1.2.6 Informix Spatial DataBlade . 16
1.2.7 PHP on Informix . 17

1.3 Informix overview . 17
1.3.1 Architecture overview . 18
1.3.2 Informix developer environment . 21
1.3.3 Informix capabilities. 22

Chapter 2. Setting up an Informix development environment 25
2.1 Server setup . 26

2.1.1 Planning for the installation . 26
2.1.2 Installing Informix Server. 26
2.1.3 Configuring Informix Server . 27

2.2 Client setup . 34
2.2.1 Informix Client options. 34
2.2.2 Installing and setting up Client SDK . 36
2.2.3 Setting up IBM Data Server drivers. 43
2.2.4 Setting up Informix JDBC . 53

Chapter 3. Working with the ODBC driver . 57
3.1 ODBC and Informix . 58
© Copyright IBM Corp. 2010. All rights reserved. iii

3.2 Setup and configuration . 58
3.2.1 IBM Informix ODBC Driver . 58
3.2.2 IBM Data Server Driver for ODBC and CLI . 70
3.2.3 Verifying connectivity . 74

3.3 Developing an ODBC application . 75
3.3.1 Connecting to the database . 75
3.3.2 Type mapping . 79
3.3.3 Performing database operations . 82
3.3.4 Handling special data types . 95
3.3.5 Error handling . 112
3.3.6 Troubleshooting . 117

Chapter 4. Working with ESQL/C . 125
4.1 Informix ESQL/C . 126
4.2 Setup and configuration . 127
4.3 Windows system configuration . 127
4.4 Developing an ESQL/C application . 128

4.4.1 Creating an ESQL/C application . 128
4.4.2 Performing database operations . 133
4.4.3 Data types mapping . 141
4.4.4 Handling special data types . 142
4.4.5 Exception handling . 148
4.4.6 Troubleshooting . 150

Chapter 5. Working with the JDBC drivers . 153
5.1 JDBC drivers for an Informix database . 154

5.1.1 IBM Informix JDBC Driver . 154
5.1.2 IBM Data Server Driver for JDBC and SQLJ 156

5.2 Setup and configuration . 157
5.2.1 Configuration. 157
5.2.2 Verify connectivity with Informix JDBC Driver 158
5.2.3 Verify connectivity with the Data Server Driver 160

5.3 JDBC type mapping . 161
5.4 Performing database operations . 163

5.4.1 Connection to the database . 163
5.4.2 Manipulating data . 168

5.5 Informix additional features . 174
5.5.1 Batch inserts or updates and using ResultSet metadata 175
5.5.2 BIGSERIAL data type . 177
5.5.3 Informix smart large objects . 178
5.5.4 Secure Socket Layer. 182

5.6 Typical errors. 185
5.6.1 Class not found errors. 186
iv IBM Informix Developer’s Handbook

5.6.2 Connectivity errors . 186
5.6.3 Syntax errors. 187

5.7 Tracing . 187
5.7.1 IBM Informix JDBC Driver . 187
5.7.2 IBM Data Server Driver for JDBC . 188

Chapter 6. IBM Informix with Hibernate . 189
6.1 Hibernate for Java . 190

6.1.1 Overview of Hibernate. 190
6.1.2 Hibernate concepts . 191

6.2 Setup and configuration . 192
6.2.1 Installation . 192
6.2.2 Configuration. 194

6.3 Using Hibernate with an Informix database. 198
6.3.1 Components of a Hibernate application . 198
6.3.2 Working with a Hibernate object . 203
6.3.3 Using annotations . 211

Chapter 7. Working with IBM Informix OLE DB Provider. 215
7.1 IBM Informix OLE DB Provider . 216
7.2 Setup and configuration . 216

7.2.1 Installation and setup . 216
7.2.2 Verifying connectivity . 217

7.3 Developing an OLE DB application . 219
7.3.1 Supported interfaces . 220
7.3.2 Connecting to database . 221
7.3.3 Type mapping . 222
7.3.4 Cursors . 224
7.3.5 Typical database operations . 225

7.4 Visual Basic, ADO.NET, and SQL Server . 237
7.4.1 OLE DB with Visual Basic . 238
7.4.2 ADO.NET and the OLEDB bridge . 240
7.4.3 SQL Server . 242

7.5 Troubleshooting and tracing . 245
7.5.1 Typical errors . 245
7.5.2 Tracing . 248

Chapter 8. Working with .NET data providers. 253
8.1 Informix and .NET data providers . 254
8.2 Setup and configuration . 254

8.2.1 IBM Informix .Net Provider . 254
8.2.2 IBM Data Server Provider for .NET. 255
8.2.3 Verifying connectivity . 256

8.3 Developing a .NET application . 259
 Contents v

8.3.1 Connecting to the database . 259
8.3.2 Data type mapping . 262
8.3.3 Performing database operations . 264
8.3.4 Handling Informix specific data types . 276
8.3.5 Troubleshooting . 290
8.3.6 Tracing . 291

8.4 Visual Studio Add-In for Visual Studio. 293

Chapter 9. Working with PHP . 295
9.1 Informix and PHP extensions . 296
9.2 Setup and configuration . 297

9.2.1 Installing OAT . 297
9.2.2 Verifying the PDO_INFORMIX setup . 299
9.2.3 Verifying the PDO setup . 299
9.2.4 Verifying connectivity . 300

9.3 Developing a PHP application. 301
9.3.1 Connecting to a database . 302
9.3.2 Performing database operations . 304
9.3.3 Handling complex data types . 310
9.3.4 Working with PHP extensions . 319
9.3.5 Exception handling . 324
9.3.6 Troubleshooting . 328

Chapter 10. User-defined routines. 329
10.1 An overview of UDRs and database extensions 330

10.1.1 Considerations for UDRs . 331
10.1.2 About UDRs . 332
10.1.3 Considerations for extending data types. 334

10.2 Developing UDRs . 336
10.2.1 UDR examples in SQL . 336
10.2.2 UDRs in Java . 340
10.2.3 UDRs in C . 348

10.3 DataBlades and bladelets . 352
10.3.1 Configuration. 353
10.3.2 IBM Informix provided DataBlades . 357
10.3.3 Developing a bladelet routine . 359

Chapter 11. Working with Ruby on Rails. 361
11.1 A brief overview of Ruby on Rails . 362

11.1.1 Architecture of Ruby on Rails . 363
11.1.2 Ruby Driver and Rails Adapter . 363

11.2 Setup and configuration . 364
11.2.1 Ruby Informix driver . 364
11.2.2 Data Server Ruby driver . 367
vi IBM Informix Developer’s Handbook

11.2.3 Rails adapters . 369
11.3 Database operations . 373
11.4 Using the Rails Adapter with Ruby Informix . 384

11.4.1 Creating database objects . 384
11.4.2 Creating the Rails application . 385
11.4.3 Modifying the database configuration file 386
11.4.4 Creating the Rails model and controllers 387
11.4.5 Starting the Rails web server . 389
11.4.6 Demonstrating website application . 389

11.5 Using the Rails Adapter with IBM_DB. 391
11.5.1 Creating the Rails application . 392
11.5.2 Modifying the database configuration file 392
11.5.3 Creating model, control, and view. 393
11.5.4 Migrating the model. 394
11.5.5 Starting the Rails web server . 396
11.5.6 Checking the application from website . 396

Chapter 12. Informix 4GL Web Services . 399
12.1 Basic concepts . 400

12.1.1 IBM Informix 4GL . 400
12.1.2 Service-oriented architecture and Web Services 400
12.1.3 Web Services development . 400
12.1.4 Informix 4GL and Web Services . 401
12.1.5 Components . 401

12.2 Setup and configuration . 402
12.2.1 Prerequisites and supported platforms . 402
12.2.2 Environment . 403

12.3 Informix 4GL Web Services tools . 404
12.3.1 The w4glc Web Services compiler . 404
12.3.2 The w4gl utility . 406
12.3.3 Web Services Description Language Parser (wsdl_parser) 407
12.3.4 I4GL Web Services process . 409

12.4 Developing a web service with I4GL . 409
12.4.1 Example I4GL function . 410
12.4.2 Host and application details . 411
12.4.3 Definition of the web service . 412
12.4.4 Generate the configuration file . 416
12.4.5 Deployment of the web service . 420
12.4.6 Packaging of the web service . 421
12.4.7 Starting the Axis2 application server. 422
12.4.8 Consuming the I4GL web service . 422

12.5 Consuming a web service with I4GL . 425
12.5.1 Web service to consume. 425
 Contents vii

12.5.2 Compiling the wrapper code . 427
12.5.3 Using the web service from an I4GL application. 428

12.6 Troubleshooting. 429
12.6.1 Typical problems . 429
12.6.2 Tracing . 434

Chapter 13. Application development considerations. 437
13.1 Concurrency and locking. 438

13.1.1 Types of locks . 438
13.1.2 Lock duration. 440
13.1.3 Lock granularity. 440

13.2 Locking issues and performance. 445
13.2.1 Deadlocks . 446

13.3 Isolation levels. 447
13.4 Configuration options . 449

13.4.1 Server identification. 449
13.4.2 Storage space identifiers. 450
13.4.3 Limiters and limits . 452
13.4.4 Java configuration parameters . 457

13.5 Working with your database administrator . 458
13.5.1 Parameters for negotiation . 461
13.5.2 Monitoring isolation levels . 462
13.5.3 Monitoring locks . 463
13.5.4 Monitoring user threads . 464

Appendix A. Parameters in the onconfig file . 467

Appendix B. Accommodating distributed transactions 469
B.1 Distributed transactions . 470
B.2 TP/XA Transaction Manager XA Interface Library 470
B.3 XA_TOOL ESQL/C sample. 471

Related publications . 479
IBM Redbooks publications . 479
Other publications . 479
Online resources . 480
How to get IBM Redbooks publications . 480
Help from IBM . 480

Index . 481
viii IBM Informix Developer’s Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2010. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DataBlade®
DB2 Universal Database™
DB2®
developerWorks®

Distributed Relational Database
Architecture™

DRDA®
IBM®
Informix®
MQSeries®

Rational®
Redbooks®
Redpaper™
Redbooks (logo) ®
UC2™
WebSphere®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Informix Developer’s Handbook

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Informix® is a low-administration, easy-to-use, and embeddable database
that is ideal for application development. It supports a wide range of development
platforms, such as Java™, .NET, PHP, and web services, enabling developers to
build database applications in the language of their choice. Informix is designed
to handle RDBMS data and XML without modification and can be extended
easily to handle new data sets.

This IBM Redbooks® publication provides fundamentals of Informix application
development. It covers the Informix Client installation and configuration for
application development environments. It discusses the skills and techniques for
building Informix applications with Java, ESQL/C, OLE DB, .NET, PHP, Ruby on
Rails, DataBlade®, and Hibernate.

The book uses code examples to demonstrate how to develop an Informix
application with various drivers, APIs, and interfaces. It also provides application
development troubleshooting and considerations for performance.

This book is intended for developers who use IBM Informix for application
development. Although some of the topics that we discuss are highly technical,
the information in the book might also be helpful for managers or database
administrators who are looking to better understand their Informix development
environment.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Rochester Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2® system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development, and an IBM Certified IT Specialist
© Copyright IBM Corp. 2010. All rights reserved. xi

Krishna Doddi (also known as Prasad) has been with IBM
Informix since 1996. He worked in Informix Advanced Support
for Client Products. The main products he supported were
Informix Client Software Development Kit (Client SDK), mostly
on the Microsoft Windows® platform. After the IBM acquisition
in 2001, he moved to DB2 Advanced Support, again in the
Client Products division. After five years in DB2, he moved to
Informix QA for Informix Client products, including JCC

Common Client and PureQuery. He is currently the contact for Informix
Integration projects.

Manoj Ghogale is a Tech Lead in the Informix team at ISL
India. Manoj has 9 years of industry experience and has been
with IBM for 5 years. He has worked on numerous automation
projects and new features of Informix Server. He holds a
Bachelor's degree in Engineering from National Institute of
Engineering, Mysore, India.

David Jay is a Staff Software Engineer in the IBM North
Americas Technical Support Team, providing advanced
technical support, defect discovery, and support training for
Informix products and SolidDB. David joined the Informix
Support team in September 1996, and has served in various
software and support roles since the 1980’s. He has a
Bachelor of Science from Pennsylvania State University, and
enjoys public speaking assignments whenever he gets them
through Toastmasters and IBM.

Javier Sagrera is a software engineer on the Common Client
Technologies (CCT) group. He joined the Informix team in 2000
and has over 15 years experience in application development
for Informix database servers and Informix clients. Currently
based on the IBM UK Bedfont Lab in London, he has extensive
knowledge on all the Microsoft® technologies and is
considered as a subject matter expert worldwide on all the
Informix development tools.
xii IBM Informix Developer’s Handbook

Acknowledgements

Thanks to the following people for their contributions to this project:

Jacques Roy
Ted Wasserman
Rakeshkumar Naik
Jonathan Leffler
Robert Uleman
Richard Snoke
Guy Bowerman
IBM Software Group

Greg Holmes
Alberto Bortolan
Adam Hattrell
IBM Bedfont Laboratory

Emma Jacobs
International Technical Support Organization, Rochester Center

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks, and you can participate
either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM Informix Developer’s Handbook

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction to IBM Informix

We live in a business world that requires a variety of software components to fully
handle the scope of business needs. When considered as a group, the products
have to work together, and they must scale well to cover the demands of
business to assure continued growth. Frequently, a significant criteria list might
be needed to specify all the facets that are encountered in daily, monthly, and
yearly periods of business operations. Developers must be sensitive to how the
database engine functions, what server-side capabilities can be brought into
play, and what development tasks need to occur on the client or application side.

In this chapter, we provide an overview of Informix products and capabilities. Our
approach is somewhat reference oriented. In addition to the overview of Informix
products, we also provide an awareness of the architecture of IBM Informix from
both the server-side and the client-side, to better acquaint the developer with
perspectives that you might need to know.

We also discuss the capabilities of the products in the Informix suite. The IBM
Informix products that we describe demonstrate how to manage business
performance, handle all types of business applications, minimize administration
through various self-automated and self-monitored options and, at all times,
optimize the setup to help minimize costs for maintenance and resource
allocations.

1

© Copyright IBM Corp. 2010. All rights reserved. 1

1.1 Server options

There are a number of options for IBM Informix servers that are designed to meet
the needs of business enterprises that range in size from a small group with a
few employees up to several thousand people. The database needs to meet a
variety of requirements of a diverse group. This section includes a brief
discussion of each of the server possibilities and how they are generally used.

With the wealth of different server types available, unless otherwise noted, each
comes with the opportunity to use the IBM Informix Client Software Development
Kit (Client SDK) for development of applications. Prior to renaming the brand
editions in May 2010, IBM Informix had several versions. You can expect that
each version is backward and forward compatible, beginning with 7.2x and
moving forward through 7.3x, 9.2x, 9.30, 9.40, and 10.00. The Cheetah series
began with Informix Dynamic Server 11.10 and quickly advanced into the 11.50
family. At this writing, the IBM Informix Ultimate series is now available, which
begins with 11.50.xC7 and following.

It is helpful to be aware of version numbering conventions:

� The letters UC or UD at the end of a version number indicate 32-bit UNIX®.
� The letters TC indicate a 32-bit Windows version.
� The letters FC indicate a 64-bit version (UNIX or Windows).

These naming conventions become important in application and memory
addressability. A 32-bit application works with a 64-bit server, but the application
can access only 32-bit memory.

1.1.1 Informix servers

Several options are available for IBM Informix servers. Each option is designed to
address specific needs in business. This section discusses these different
options.

No-charge editions
The following no-charge editions are available as separate offerings subject to
the IBM International License Agreement for Non-Warranted Programs (ILAN):

� Informix Developer Edition
� Informix Innovator-C Edition
2 IBM Informix Developer’s Handbook

Informix Developer Edition
The Informix Developer Edition provides all the features of Informix at no cost,
when used solely for application development and testing. It can be used for
application development and prototyping with no time limits. Support is available
by way of the Informix user community through Internet forums.

Informix Developer Edition offers the following application development choices:

� C
� C++
� .NET
� Java
� Ruby on Rails
� Perl
� Python
� PHP
� 4GL

Informix Developer Edition supports the following operating systems:

� AIX®
� HP
� UNIX
� Linux®
� Macintosh
� Sun Solaris
� Windows

This Informix edition is limited to 1 CPU, 1 GB memory, and 8 GB storage.

Informix Developer Edition includes the following bundle:

� Informix Client Software Development Kit
� Informix DataBlade Developers Kit
� Informix Spatial Datablade

Informix Innovator-C Edition
The Innovator-C Edition provides a robust and powerful environment that is
designed to support small production workloads. It features the most widely used
data processing functionality, including limited Enterprise Replication and high
availability clustering.
 Chapter 1. Introduction to IBM Informix 3

This edition offers the following application development choices:

� C
� C++
� .NET
� Java
� Ruby on Rails
� Perl
� 4GL

Innovator-C Edition supports the following operating systems:

� AIX
� HP
� UNIX
� Linux
� Macintosh
� Sun Solaris
� Windows

This edition is limited to one socket with no more than four cores and with a total
of 2 GB of RAM that are operating from the same installation.

Licensed versions
In a business enterprise that demands constant uptime and consistent delivery
requirements, it helps to have a license and professional, timely support to cover
every need. There are several licensing options available.

In this section, we discuss the Informix Server versions that are licensed
subscriptions. Table 1-1 describes the terms and abbreviations for these editions.
The criteria might be subject to change over time. Consult with a sales
representative for the most accurate definitions.

Note: Innovator-C Edition is an offering to be used for development, test, and
user production workloads without a license fee. This edition can be used only
by user organizations. It cannot be redistributed without signing a
redistribution contract. Support is community-based though an optional
for-charge service and support package is available.
4 IBM Informix Developer’s Handbook

Table 1-1 Informix licensed versions

Informix Choice Edition
Informix Choice Edition is ideal for small to medium size business. This edition is
available for both Microsoft Windows and Apple Macintosh operating systems.
This edition is limited to a total of eight cores over a maximum of two sockets and
8 GB of RAM operating. The Informix Choice Edition includes limited Enterprise
Replication (ER) clustering with 2-root nodes to send or receive data updates
within the cluster. This edition also provides limited high availability (HA) cluster
functionality. Along with the primary server, you can have one secondary node,

Licensing term Defined

Processor Value Unit
(PVU)
(also known as processor-based
pricing)

Calculated using the number of processor cores in the physical server
multiplied by the corresponding value units based on processor
architecture. An unlimited user or connection license and is usually
the optimal choice when the user or session load cannot be controlled
or counted.

Authorized User
Single Install

A single named user or specific individual accessing one installation
of Informix on each physical or virtual server. That authorized user can
establish multiple connections to an Informix instance on the server.
Each connection is for the exclusive use of that one authorized user
from a single client device.

Concurrent Session A single logical connection from a client device to an Informix instance
on each physical or logical server. Each connection, whether active or
not, requires a license, regardless of whether it comes from one client
device with multiple users or from a single user establishing multiple
connections. The number of concurrent sessions is counted from the
client device, rather than at the server level, regardless of whether the
connection is directly to the Informix instance or indirectly or whether
it is through application servers, persistent connectivity layers,
connection multiplexers or concentrators, or any other technology
inserted between the actual user and the Informix instance.

Limited Use Socket
(LU Socket)

Available only on Informix Growth Edition, this license allows for
licensing on a physical socket potentially containing multiple cores. A
LU Socket license is required for each active processor socket. This
licensing metric can be used only on a physical server with no more
than four physical sockets. You can purchase licenses for up to four
physical sockets and use up to 16 cores.

Install An “Install” is an installed copy of an Informix product on a physical
server (or partition thereof) or in a virtual machine image. For
example, if a physical server is segmented into partitions, whether
logical (also know as LPARs) or physical, each partition containing
Informix is considered a separate IBM Informix “Install” for licensing
purposes and restrictions. The concept of an “Install” applies to the
licensing limits specified for all Informix Editions.
 Chapter 1. Introduction to IBM Informix 5

either an HDR secondary or RSS secondary. The HA cluster secondary node
can be used for SQL operations. This edition does not support use of the Shared
Disk secondary (SD secondary) node type.

Informix Growth Edition
The Informix Growth Edition is available on all platforms (Linux, UNIX, Windows,
and Apple Macintosh). The Growth Edition is ideal for mid-sized companies or
departmental servers in an enterprise deployment. It can be deployed on up to
16 cores over a maximum of four sockets and 16 GB of RAM operating from the
same Install. License options include Authorized User Single Install, Concurrent
Session, PVU, and LU Socket metrics. LU Socket enables licensing by physical
processor socket and is limited to physical servers with no more than four
physical processor sockets.

Informix Growth Edition gives you additional database functionality, including
unlimited ER cluster nodes of any type for sending or receiving data updates
within the cluster. From a licensing perspective, because ER nodes are
stand-alone, each ER node must be fully licensed. Informix Growth edition
supports up to two HA cluster secondary nodes of any type. As long as the
secondary node or nodes are functioning only as a backup secondary, they can
be deployed without charge. However, if you use a secondary node for SQL
operations (read or write), the secondary node must be fully licensed.

Informix Ultimate Edition
The IBM Informix Ultimate Edition includes nearly all the Informix features and
functionality with unlimited scalability required for the highest OLTP and
warehousing performance.

Informix Ultimate Edition supports the following operating systems:

� AIX
� HP
� UNIX
� Linux
� Macintosh
� Sun Solaris
� Windows

This edition can be licensed by PVU, Concurrent Session, or Authorized User
Single Install metrics.

With this edition, full HA cluster and ER functionality is available, including
unlimited ER nodes and all HA cluster secondary instance types. From a
licensing perspective, because ER nodes are stand-alone, each ER node must
be fully licensed, but HA secondary nodes can be deployed without charge if they
6 IBM Informix Developer’s Handbook

are functioning only as a backup secondary. If you use any secondary node for
SQL operations (read or write), the secondary node must be fully licensed.

This edition offers the Geodetic and Excalibur DataBlades add-on.

The Storage Optimization Feature was released with Informix version11.5 xC4
and following. The Storage Optimization Feature provides data compression to
dramatically reduce data storage and backup/recovery costs and administration.
The reduced data footprint also provides a significant increase in performance for
data retrieval.

Extended Parallel Server
The IBM Informix Extended Parallel Server is a high-end database that is
typically used for scalable data warehousing with fast data loading and
comprehensive data management. It is designed for a broad range of enterprises
that require complex, query-intensive analytical applications.

IBM Informix Extended Parallel Server uses the following examples:

� Reliable data manipulation
� Ad hoc queries from data warehouses
� A combined data warehouse and data mart
� Rapid and concurrent data loading and query execution

IBM Informix Extended Parallel Server provides full parallel query processing,
while being able to use hardware resources to deliver mainframe-caliber
scalability, manageability, and performance with minimal OS and administrative
overhead. For more information, see Database Strategies: Using Informix XPS
and DB2 Universal Database, SG24-6437.

Informix OnLine
IBM Informix OnLine is an easy to use, embeddable relational database server
for low-to-medium workloads.

It has less features and functionality than the Informix Ultimate Server, but it
scales well while providing online transaction processing support and the
assurance of data integrity. Informix OnLine has rich multimedia data
management capabilities, supporting the storage of a wide range of media such
as documents, images, and audio by way of text and byte columns. Also, it is not
designed to handle extended data types or replication.

This server supports a wide variety of application development tools, along with a
large number of other third-party tools, through support for the ODBC and JDBC
industry standards for client connectivity.
 Chapter 1. Introduction to IBM Informix 7

There are three edition options for this server:

� Informix OnLine Extended Edition 5.20

This edition option is a full-featured, easy-to-use SQL database with low
administrative overhead. It contains two popular Informix products, Informix
OnLine and Informix STAR, and provides distributed computing with a proven
database server. It allows the Rapid Application Development tools to use
pipes to communicate with OnLine Extended Edition 5.20 servers running on
the same system, instead of having to use a TCP/IP loopback connection with
Informix Star or Informix Net. It supports greater than 2 GB chunk offsets, to
use the entire capacity of the disk drive without partitioning it into smaller
logical devices and employing logical volume managers.

The operating systems this edition supports include AIX, HP UNIX, and Sun
Solaris.

� Informix OnLine Extended Edition for Linux

This edition is same as the Informix OnLine Extended Edition 5.20 but is but
only available for Linux.

� Informix OnLine Personal Edition

This is the single-user product version, available only on Linux. It provides the
same functionality as IBM Informix OnLine Extended Edition, at an
economical cost. It enables you to quickly become familiar with the
ease-of-use and multimedia capability of this proven relational database
management system.

Standard Engine
IBM Informix Standard Engine is an embeddable database server that runs on
UNIX, Linux and Windows. It provides an ideal solution for developing small to
medium-sized applications that need the power of SQL without database
administration requirements (low-maintenance, high-reliability). For limited scale
databases, it delivers excellent performance, adheres to data consistency
standards, and still provides client/server capabilities. It can be seamlessly
integrated with Informix application development tools and third-party
development tools compliant with the ODBC and JDBC standards.

This edition supports the following operating systems:

� AIX
� HP UNIX
� Linux
� Sun Solaris
� Windows
8 IBM Informix Developer’s Handbook

1.2 Informix tools for developers

There is a significant list of tools available from Informix for developers. We focus
on the available application programming interface (API) options and language
possibilities. There are also other utilities and tools that are provided with the
engine that promote further ease of use.

The 4GL developer’s edition includes the ACE Report Writer, which can be used
to generate forms and reports quickly. The High Performance Loader, onload,
onunload, and External table are bulk load and unload utilities that provide fast
flat file movements. Other tools include I-Spy for auditing, MaxConnect, and the
OpenAdmin Tool (OAT) for remote server administration and SQL.

For more information about these or other tools, consult with a sales
representative or visit the Informix support website at:

http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Manag
ement/Informix_Product_Family

1.2.1 Informix Connect

Informix Connect is the run time version of Client SDK that comes with the server
engine. You use Client SDK and related tools to develop your application. When
it is ready for use in production, Informix Connect is the tool used to deploy the
application. It is supplied with the server engine software and provides the
connectivity and runtime libraries which permit interaction between the engine
and the application. While some Informix Connect development can be done
without Client SDK, the great majority should be handled through the Client SDK
API.

1.2.2 Informix Client Software Development Kit

Client SDK is a package of several APIs that are optimized for developing
applications for IBM Informix servers. Client SDK allows developers to write
applications in the language they prefer and to build applications that can access
multiple IBM Informix databases. In this section, we discuss the API packages
that are included in Client SDK.

Open Database Connectivity
Open Database Connectivity (ODBC) is a specification for a database API. It is
based on the Call Level Interface specifications from X/Open and the
International Standards Organization and International Electromechanical
Commission (ISO/IEC). ODBC supports SQL statements with a library of C
 Chapter 1. Introduction to IBM Informix 9

http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/Informix_Product_Family
http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/Informix_Product_Family

functions. An application calls these functions to implement ODBC functionality.
ODBC applications can perform the following operations:

� Connect to and disconnect from data sources.

� Retrieve information about data sources.

� Retrieve information about the IBM Informix ODBC Driver.

� Set and retrieve IBM Informix ODBC Driver options.

� Prepare and send SQL statements.

� Retrieve SQL results and process the results dynamically.

� Retrieve information about SQL results and process the information
dynamically.

ODBC lets you allocate storage before or after the SQL results are available.This
feature lets you determine the results and the action to take without the
limitations that predefined data structures impose. ODBC does not require a
preprocessor to compile an application program. ODBC supports Secure
Sockets Layer (SSL) connections. For information about using the SSL protocol,
see IBM Informix Version 11.5 Security Guide, SC23-7754.

Informix ODBC supports the following additional features and capabilities:

� Microsoft Transaction Server (MTS) environment. For more information about
MTS, see the MTS sections in IBM Informix ODBC Driver Programmers
Manual, SC23-9423.

� ODBC can handle extended data types such as:

– Collection (LIST, MULTISET, and SET)
– Distinct
– Opaque (fixed, unnamed)
– Row (named, unnamed)
– Smart large objects (BLOB and CLOB)
– Client functions that support extended data types

� Long identifiers

� Global Language Support (GLS) data types (NCHAR,NVARCHAR).

� Support for Unicode and XA.

� IPv6 internet protocol.
10 IBM Informix Developer’s Handbook

ODBC with the IBM Informix ODBC Driver can include the following
components:

� Driver manager

An application can link to a driver manager that links to the driver specified by
the data source. The driver manager also checks parameters and transitions.
You can purchase the ODBC Driver Manager from a third-party vendor for
most UNIX platforms. On Microsoft Windows platforms, the ODBC Driver
Manager is a part of the Operating System.

� IBM Informix ODBC Driver

This driver provides an interface to the Informix database server. Applications
can use the driver in the following configurations:

– To link to the ODBC driver manager
– To link to the Driver Manager Replacement and the driver
– To link to the driver directly

� Data sources

The driver provides access to the following data sources:

– Database management systems (DBMS) and database servers

– Databases

– Operating systems and network software required for accessing the
database

JDBC and SQLJ
JDBC is an application programming interface (API) that Java applications use to
access relational databases. IBM Informix database systems can be supported
by one of two APIs for client applications and applets written in Java:

� IBM Data Server Driver

You can use the IBM Data Server Driver (also known as the IBM common
client driver) with either DB2 or Informix. This JDBC driver lets you write Java
applications to access a local Informix Server, DB2 data, or any remote
relational data on a server that supports DRDA®. Using this API, you can
access these database systems using JDBC, SQLJ or pureQuery. SQLJ
provides support for embedded static SQL in Java applications.

Note: The IBM Data Server Driver is introduced with Client SDK beginning
with Client SDK 3.50.XC7. At this writing, the Client SDK distributed with
Informix database server is one (1) version less than the server version. As
an example, Client SDK 3.50.XC6 is the version distributed with Server
edition 11.50.XC7.
 Chapter 1. Introduction to IBM Informix 11

The IBM Data Server Driver for JDBC and SQLJ is a single driver that
includes JDBC Type 2 and JDBC Type 4 behavior. For connections to IBM
Informix databases, only Type 4 behavior is supported. IBM Data Server
Driver for JDBC and SQLJ Type 4 driver behavior is also referred to as IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity. For more
information about these APIs, see the Java discussions at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.i
bm.db2.luw.apdv.java.doc/doc/rjvjdb2o.html

� IBM Informix JDBC Driver

IBM Informix JDBC Driver is a native-protocol, pure- Java driver (JDBC type
4). Thus, when you use IBM Informix JDBC Driver in a Java program that
uses the JDBC API to connect to an IBM Informix database, your session
connects directly to the database or database server, without a middle tier.

When deciding which JDBC interface to use, it is important to understand the
differences between these two APIs. If you need to work with extended data
types and features that are unique to IBM Informix databases, use IBM Informix
JDBC Driver.

To support DataSource objects, connection pooling, and distributed transactions,
IBM Informix JDBC Driver provides classes that implement interfaces and
classes described in the JDBC 3.0 API from Sun Microsystems.

Informix classes implementing Java interfaces
Table 1-2 lists the Java interfaces and classes and the Informix classes that
implement them.

Table 1-2 Java interfaces and classes

JDBC interface class Informix class

java.io.Serializable com.informix.jdbcx.IfxCoreDataSource

java.sql.Connection com.informix.jdbc.IfmxConnection

javax.sql.ConnectionEventListener com.informix.jdbcx.IfxConnectionEvent-
Listener

javax.sql.ConnectionPoolDataSource com.informix.jdbcx.IfxConnectionPoolData-
Source

javax.sql.DataSource com.informix.jdbcx.IfxDataSource

javax.sql.PooledConnection com.informix.jdbcx.IfxPooledConnection

javax.sql.XADataSource com.informix.jdbcx.IfxXADataSource

java.sql.ParameterMetaData com.informix.jdbc.IfxParameterMetaData
12 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.apdv.java.doc/doc/rjvjdb2o.html

IBM Informix JDBC Driver, Version 3.0, and later implements the updateXXX()
methods defined in the ResultSet interface by the JDBC 3.0 specification. These
methods, such as updateClob, are further defined in the J2SDK 1.4.x API (and
later versions) and require that the ResultSet object can be updated. The
updateXXX methods allow rows to be updated using Java variables and objects
and extend to include additional JDBC types. These methods update JDBC
types implemented with locators, not the data that is designated by the locators.

Informix classes Java specification
To support the Informix implementation of SQL statements and data types, IBM
Informix JDBC Driver provides classes that extend the JDBC 3.0 API. For
information about the Java classes and the Informix classes that application
programs can use to extend them, see IBM Informix JDBC Driver Programmer's
Guide, v3.50, SC23-9421.

Because IBM Informix has extended functionality, extra data types, and smart
large objects, several Informix classes provide support for functionality that is not
present in the JDBC 3.0 specification. Table 1-3 lists these classes.

Table 1-3 Informix classes beyond the Java Specification

In releases prior to JDK Version 1.4, the UDTManager and UDRManager helper
classes included in ifxtools.jar were not accessible from a packaged class. As
of IBM Informix JDBC Driver 2.21.JC3, all these classes are in the udtudrmgr
package. For backwards compatibility, unpackaged versions of these classes are
also included. To access a packaged class, use the following import statements
in your program:

� Import udtudrmgr.UDTManager;
� Import udtudrmgr.UDRManager;

JDBC interface or class Informix class Provides support for

java.lang.object UDTManager Deploying opaque data types in the
database server

java.lang.object UDTMetaData Deploying opaque data types in the
database server

java.lang.object UDRManager Deploying user-defined routines in
the database server

java.lang.object UDRMetaData Deploying user-defined routines in
the database server
 Chapter 1. Introduction to IBM Informix 13

OLEDB
Microsoft OLE DB is a specification for a set of data access interfaces that are
designed to enable a variety of data stores to work together seamlessly. OLE DB
includes the following components:

� Data providers
� Data consumers
� Service components

Each data provider makes data available to consumers in a tabular form through
virtual tables. Data consumers use the OLE DB interfaces to access data. You
can use the IBM Informix OLE DB Provider to enable client applications, such as
ActiveX Data Object (ADO) applications and web pages, to access data on an
Informix server.

You can find detailed information about the characteristics of the IBM Informix
OLE DB Provider in IBM Informix OLE DB Provider Programmer's Guide,
Version 3.50, SC23-9424. The IBM OLEDB provider works with any IBM Informix
Server version greater than or equal to 7.3 (7.3, 8.x, 9.x,10.x or 11.x). For
information about OLE DB architecture and programming, go to the Microsoft
website and search for “Introduction to OLE DB” topic:

http://www.microsoft.com

ESQL/C
Informix ESQL/C is an API that enables you to embed SQL statements directly
into a C program by means of the Informix ESQL/C preprocessor, esql. The
preprocessor converts each SQL statement and IBM Informix-specific code to
C-language source code and then invokes the C compiler to compile it.

Informix ESQL/C includes the following components:

� The Informix ESQL/C libraries of C functions, which provide access to the
database server, and all the Informix data types

� The Informix ESQL/C header files, which define the data structures,
constants, and macros useful to an Informix ESQL/C program

� The esql command, which processes the Informix ESQL/C source code to
create a C source file that it passes to the C compiler

� The finderr utility on the UNIX system and the Informix Error Messages
Windows-based utility that provides information about IBM Informix specific
error messages

� GLS locale and code set conversion files for locale specific information
14 IBM Informix Developer’s Handbook

http://www.microsoft.com

1.2.3 4GL

IBM Informix 4GL is a fourth-generation application development and production
environment that provides power and flexibility without the need for
third-generation languages such as C. The following package options are
available for all UNIX and Linux operating systems:

� Informix 4GL Rapid Development System and Informix 4GL Interactive
Debugger provide a pseudo-compiled development environment for
applications.

� Informix 4GL C Compiler provides the components needed to develop and
compile a high-performance application for a production environment.

1.2.4 Ruby on Rails

IBM Informix supports database access for client applications written in the
popular and dynamic open source programming language called Ruby. To
accomplish this, the developer must use a Ruby Driver and a Rails Adapter for
the standard Ruby framework Rails. IBM Informix offers the following methods for
using Ruby and Ruby on Rails:

� The Ruby driver and Rails Adapter for IBM Data Servers is supported on
Informix, Version 11.10 or later, using the DRDA protocol. This option requires
the IBM Data Server Driver for ODBC and the call level interface (CLI) which
are available as part of the Informix Client SDK.

� Ruby/Informix and Rails Informix_adapter are specific for Informix database
server and work with Informix database connections. Support all versions of
the IBM Informix database servers and require the Client SDK libraries for the
communication with the database server.

You can download the both packages from the Rubyforge website at:

http://rubyforge.org/projects/ruby-informix/

1.2.5 Informix DataBlade Developers Kit

The IBM Informix DataBlade Developers Kit (DBDK) is an aid for developing
DataBlade modules. The kit runs on Microsoft Windows and generates much of
the code you need for a DataBlade. DataBlades can be developed without a
DBDK on operating systems other than Windows; however, it is noteworthy that
the procedures for setting up the development environment on a UNIX system
are complex without help from DBDK.
 Chapter 1. Introduction to IBM Informix 15

http://rubyforge.org/projects/ruby-informix/

The DataBlade Developers Kit provides several graphical user interfaces for
creating and working with Informix DataBlade modules.:

� BladeSmith: A tool for organizing a DataBlade module development project.
You can use BladeSmith to create a project and define the objects, such as
data types and routines, that belong to the DataBlade module. BladeSmith
generates source files, header files, make files, functional test files, SQL
scripts, messages files, and packaging files.

� DBDK Visual C++ Add-In and IfxQuery: Tools for debugging a DataBlade
module using Microsoft Visual C++ on Windows. The add-in automates many
of the debugging tasks and calls the IfxQuery tool to run unit tests for
DataBlade module routines.

� BladePack: A tool for creating a DataBlade module package. BladePack can
create a simple directory tree containing files to be installed or an installation
that includes an interactive user interface.

� BladeManager: A command line tool on UNIX (or Windows) that comes with
the Informix Server. It is a utility that is needed for registering and
unregistering DataBlade modules in Informix databases.

1.2.6 Informix Spatial DataBlade

Many of the IBM Informix database servers support DataBlades. Of these
DataBlades, a couple of blades are fairly popular because of their usefulness and
flexibility. We introduce one of these blades here to open your interest into an
area that you might not have considered. Location based data is one of several
features and benefits that can be found in the IBM Informix Spatial DataBlade.

The Spatial DataBlade can transform both traditional and location-based data
into essential information through the following functions:

� Expands IBM Informix Server to provide SQL-based spatial data types and
functions that can be used directly through standard SQL queries or with
client-side Geographic Information Systems (GIS) software.

� Delivers innovative spatial technology through a convenient no-charge
download.

� Generates vital business intelligence for a competitive edge.

� Maximizes spatial data capabilities to enable critical business decisions.

� Works in an enterprise replication environment which includes spatial data
types.

� Enables organizations to manage complex geospatial information alongside
traditional data, without sacrificing the efficiency of the relational database
model.
16 IBM Informix Developer’s Handbook

� Includes R-tree indexing.

R-tree is built into the database kernel and works directly with extended data
types to enable proper geospatial data management. Unlike standard indices,
the R-tree does not divide space into a full coverage of non- overlapping,
adjacent cells. Instead, it uses data partitioning, where each object is
automatically represented by a bounding box that is entirely determined by its
own shape. These bounding boxes might overlap and do not need to cover
the entire space. As a result there is no need to know the spatial extent of the
data in advance.

1.2.7 PHP on Informix

PHP, the powerful and popular server-side scripting language for creating web
content, has become an important platform for Informix development. The
Informix OpenAdmin Tool (OAT), which provides the ability to administer multiple
Informix instances from a single location, is written entirely in the PHP language.

Informix supports database access for client applications written in the PHP
programming language by using a PDO (PHP Data Object) extension that
functions as a database extraction layer. The primary PHP driver available for
Informix is called PDO_IBM, and is supported on Informix Version 11.10, and
following. The other available PHP driver is PDO_INFORMIX. It is the older of
these two, and is the driver used for the Informix OAT. You can find the drivers for
PHP on the PECL for PHP website at:

http://pecl.php.net/package/PDO_IBM

1.3 Informix overview

This section provides a description of the database architecture from a developer
perspective. There are entire manuals to describe server side functions and
administration. In this section, we limit our overview to things that the developer
should consider. For more information about the details of the IBM Informix
Server engine, consult the IBM Informix Administrators Guide, which is available
at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
adref.doc/adref.htm
 Chapter 1. Introduction to IBM Informix 17

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.adref.doc/adref.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.adref.doc/adref.htm
http://pecl.php.net/package/PDO_IBM

1.3.1 Architecture overview

An understanding of the Informix database server architecture is beneficial for
application development.

Client/server architecture
IBM Informix servers are based on a multi-threaded client/server architecture.
Regardless of the edition that you use, the server can support a large number of
client connections while users are accessing data. A quick overview provides
insights into what aspects influence development and what aspects might need
DBA attention.

The IBM Informix Server edition environments consist of several parts that are
usually not directly visible to the developer. These parts include shared memory,
disk storage, and virtual processors (VPs). The virtual processors are divided
into VP classes to manage specific tasks, such as SQL query processing (CPU),
physical and logical log processes (PIO and LIO), network connection processes
(NET), engine administration (ADM), miscellaneous (MSC), and disk I/O (AIO
and KAIO) processes. On UNIX and Apple Macintosh systems, VPs are visible
as virtual processes. On Windows environments, the VPs are seen as
threads.The program execution process is visible as oninit. Virtual processes
communicate by way of shared memory structures known as mutexes (mutually
exclusive). Because shared memory is also used to move database data in
buffers, it helps to know that some memory buffers are reserved for engine
processing and some buffers allocated (and managed dynamically) for data
processing.

Network protocols and other connection types
Users can connect to IBM Informix Server using a network connection, shared
memory, pipes, DRDA, or multiplexed connections. Shared memory and pipe
connections are only available on the same system as the server instance.
Network connections are the most popular, because they can connect different
systems and will use either a TCP/IP or a socket connection, depending on the
operating system. Regardless of the method that you choose, it is important to
minimize the overhead costs associated with opening and closing connections.
Keep sessions open only as long as it is prudent, and re-use connections when
possible.

Authentication and user connections
By default, authentication is determined for users connecting to a database by
the existence of a user name in the operating system environment. Other
authentication methods include lightweight directory access protocol (LDAP), or
single sign-on (SSO) through Kerberos.
18 IBM Informix Developer’s Handbook

If you need a secured authentication method, IBM Informix Server also has two
secured connection methods by way of the encrypted Communication Support
Module (CSM) and single password CSM. You can use one or the other, but not
both at the same time. Neither the encrypted CSM not the single password CSM
method work over multiplexed connections. Enterprise Replication (ER) and high
availability (HA) replication support encryption but not with CSM. Secure Sockets
Layer (SSL) communications are an alternative to Informix-specific encryption
CSMs. SSL encrypts data end-to-end and secures TCP/IP and Distributed
Relational Database Architecture™ (DRDA) connections between two points
over a network. For setup information, see the developerWorks® article Protect
your data with Secure Sockets Layer support in Informix Dynamic Server, Part 1:
Setting up SSL support in IDS, which is available at:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0912securesockets1
/index.html

Programming and user process considerations
Any SQL or stored procedure call is parsed and optimized when the engine first
receives the statement. Parsing and optimization methods require a little extra
running time. If you can minimize this time, you can speed up query execution.
The following factors can speed up execution time:

� If you cannot optimize the query syntax in advance, have the DBA set the
OPTCOMPIND parameter in the onconfig file to 2 to use distribution data
(determined by Update statistics usage).

� If you can optimize all of your query syntax expressions in advance, you might
want your DBA to consider using OPTCOMPIND 1 or 2.

� If the same statement is executed multiple times, it is placed in a procedure or
dictionary cache. Cache statements run faster.

� If the statement is a prepared statement, the statement can be shared by
multiple users and does not need reparsing or optimizing.

� When a statement execution thread is ready to run, it is scheduled to run on a
CPU VP. On a system with multiple processors where each CPU VP maps to
a physical processor, multiple statements can run concurrently on multiple
CPU VPs. Take advantage of multiple CPUs whenever possible by means of
concurrent queries, parallel subqueries, and the degree of parallelism.

� When a statement runs on the CPU VP, it is given a brief block of time to run.
At the end of the time unit, it is placed into a VP wait cycle, and the next
statement thread gets a time block on the VP queue. This use of a wait cycle
gives all executing processes an opportunity to make progress, regardless of
the number of processes that are running.
 Chapter 1. Introduction to IBM Informix 19

http://www.ibm.com/developerworks/data/library/techarticle/dm-0912securesockets1/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0912securesockets1/index.html

Physical and logical logging
As each of the various CPU processes are running, the database engine keeps
track of a number of operations. When data is retrieved from disk, the data image
is placed in a physical log buffer. Change process information is placed in the
logical log. When image data is affected by SQL processing, the physical image
is modified periodically and written back to disk.

During this process the physical log image and logical log information are also
written into log records. Depending on the commit protocols and isolation levels,
this information is available to the DBA through recovery operations in the event
that the information is needed. The DBA can also use automatic recovery
features that are built in to the engine can if the engine abruptly goes offline due
to a power failure or crash.

Commit protocols
If transactions are made against a database that uses unbuffered logging, the
records in the logical-log buffer are guaranteed to be written to disk during
commit processing. When control returns to the application after the COMMIT
statement (and before the PREPARE statement for distributed transactions), the
logical-log records are on the disk. The database server flushes the records as
soon as any transaction in the buffer is committed (that is, a commit record is
written to the logical-log buffer).

If transactions are made against a database that uses buffered logging, the
records are held (buffered) in the logical-log buffer for as long as possible. They
are not flushed from the logical-log buffer in shared memory to the logical log on
disk until one of the following situations occurs:

� The buffer is full.
� A commit on a database with unbuffered logging flushes the buffer.
� A checkpoint occurs.
� The connection is closed.

If you use buffered logging and a failure occurs, you cannot expect the database
server to recover the transactions that were in the logical-log buffer when the
failure occurred. Thus, you might lose some committed transactions. In return for
this risk of using buffered logging, performance during alterations improves
slightly.
20 IBM Informix Developer’s Handbook

Consider using buffered logging only if the following situations:

� If the database is updated frequently (speed of updating is important).

� If the application that is performing the transaction can continue as it is and if
you decide that the price (in time and effort) of returning the database to a
consistent state by either removing the effects or reapplying the transaction is
too high or you can re-create the updates in the event of failure.

If a transaction failure does occur, you can simply choose to leave the
database in its inconsistent state if the transaction does not significantly affect
database data.

As you consider whether to use a buffered or unbuffered logging method,
remember that no automatic process or utility can perform a rollback of a
committed transaction or can commit part of a transaction that has been rolled
back. Without detailed knowledge of the application, messages are not enough
to determine what has happened. Based on your knowledge of your application
and your system, you might need to help the DBA determine when to roll back or
to follow though on interrupted transactions. For more information about this
topic, see the Guide to SQL: Tutorial section on interrupted modifications, which
is available at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
sqlt.doc/ids_sqt_277.htm

1.3.2 Informix developer environment

The environment references that you need have some variations, depending on
whether you use the IBM common client API or the native Client SDK and which
operating system you use. The environment settings must include identifying the
following references to the components:

� Setting the INFORMIXDIR environment variable to the installation directory of
the software installation location.

� Setting up Informix Server information (INFORMIXSERVER).

� Adding the $INFORMIXDIR/bin to the PATH environment variable.

On Windows, you have to set only the Informix database server information with
the setnet32.exe utility. On UNIX-type platforms, you might want to set the
environment variables so that they are set in your user profile at login or use a
setup script. You also need to reference the sqlhosts file to identify Informix
Server information. In the chapters that follow, we explain how to install the
server and provide specific details for the relevant API environment details.
 Chapter 1. Introduction to IBM Informix 21

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.sqlt.doc/ids_sqt_277.htm

Before you select an API or library, be aware that some operating systems are
not available for some of the tools and that server functionality might not be
accessible with some of the APIs. Consider the following information when
making an API selection:

� Client SDK

– Optimized for IBM Informix database servers.

– Works with PHP.

– Directly interfaces with Informix Server; no middle tier required.

– Supports all the Informix data types, extended data types, and smart
BLOBs.

� IBM Data Server Client

– Optimized for compatibility and easy development with Informix and DB2
IBM database servers.

– Works with PHP and Ruby.

– No available interface for Apple Mac systems.

– Includes support for C and Fortran development.

– No DataBlade API.

1.3.3 Informix capabilities

IBM Informix database servers provide a broad spectrum of features that allow
resilience in response to fast changing systems and applications in a modern
business environment. If you are aware of what the product can already do
before you begin to develop, it aids and enables you to support applications and
easily grow to meet new demands.

This section provides a brief overview of the capabilities of Informix.

Resilient
High availability and fast recovery are standard aspects of an on-demand
environment. Informix database server engines have a variety of ways to
configure the instance, so there is little chance of the engine being unavailable at
critical points in time.

Reliable
In addition to availability, there is a need for continuity. Informix has options to
protect a server environment, such as backup servers, full independent copies of
the processing environment for failover, and workload balancing at alternate
locations around the world.
22 IBM Informix Developer’s Handbook

Available
There is an Informix solution to fit any situation that requires availability:

� Continuous availability feature
� High availability replication with allowance for multiple secondary servers

Secure
Informix supports open, industry-standard security mechanisms such as roles,
password-based authentication, and RDBMS schema authorizations. These
open standards ensure flexibility and security with easy validation and
verification. Column-level encryption and Pluggable Authentication Modules
(PAM) are also available. The Advanced Access Control Feature offers cell-,
column-, and row-level label-based access control (LBAC). Thus, access to data
can be controlled down to the individual cell level.

Adaptable
Informix is adaptable from the server side and from the client side. The engine
component can be stripped down, embedded, and run with little user
intervention. Using the developer tools that we discuss in this book, a developer
can provide customized deployment by way of client applications and server-side
processes, such as stored procedures, multiple triggers on tables and views,
user-defined functions, and DataBlades

Fast
Informix is known for fast OLTP performance. Application performance is helped
by capabilities such as committed isolation level and non-blocking checkpoints,
which provide maximum concurrency. Direct I/O calls to file systems can result in
performance similar to raw device I/O. SQL performance can be improved
through techniques or configuration options that redirect or focus the engine’s
optimizer decisions by way of optimizer directives in the SQL or by way of
automated update statistics collection that inform the method used for running
the query. When the DBA and the developer both focus on performance, it
enables things to run more smoothly and reduces infrastructure costs.

Flexible
There are a number of APIs that are available, both as specific programming
language supplements and as interfaces that extend the architecture of the
server instance. In Informix 11 and following, the Web Feature Service API
allows developers to use location-based services or location-enabled IT services.
It is implemented in the Open GeoSpatial Consortium Web Feature Service
(OGC WFS) API. This API also interacts with location-based data provided by
the IBM Informix Spatial and Geodetic DataBlade modules. There is a significant
amount of extensibility when using DataBlade technology.
 Chapter 1. Introduction to IBM Informix 23

Hidden, behind-the- scenes tasking
Business systems and applications need to work with minimum invasions into the
operations of a business environment. From the server side, applications can run
in an automated mode and perform self-maintenance. From an application
perspective, database administrative tasks can be controlled and run from inside
an application. The SQL Administration API allows you to do tasks such as space
management, monitoring and manipulating memory, running scheduled tasks,
and monitoring user sessions without developer intervention after they are setup
and running.

Customizable install footprint
The installation of Informix can be automated, and the installation footprint can
be customized using the Deployment Wizard so that you can limit the installation
to only the data server functionality that you need and can reduce the size and
costs of a solution for your software deployment.

Affordable, reduced complexity
When IBM or the developer adds features, the first impression is that the
application will be more complex. With the features described up to this point, it is
a surprise to discover that administration can actually be reduced by means of an
application or one of the APIs and GUIs that we explain in this book.
24 IBM Informix Developer’s Handbook

Chapter 2. Setting up an Informix
development environment

This chapter describes how to set up an environment for Informix application
development, including the installation and configuration of Informix Server and
Informix Client. We focus our discussion on Informix Client products selection,
installation, and configuration. Reading this chapter can help you understand
how to complete the following tasks:

� Decide which Informix Client product is suitable for your application.

� Install and configure all Informix Client products that can connect to Informix.

� Know any special consideration for each Informix Client in terms of
connectivity.

2

Note: In this chapter, we use the terms Informix database server, Informix
Server, and Informix interchangeably. In addition, we also use the terms
Client products, Client, and Informix Client interchangeably.
© Copyright IBM Corp. 2010. All rights reserved. 25

2.1 Server setup

In this section, we describe the various methods of installing Informix Server. We
discuss how you can plan for the installation depending upon your specific
requirement. We focus the discussion on the configuration that is required at the
database server side to enable Informix Client connectivity.

2.1.1 Planning for the installation

In general, an application developer is not involved in the Informix Server product
planning and installation. However, you need to communicate the application
requirements to the DBA, who plans, installs, and configures the Informix
database server for you. For example, the DBA needs to know if you need a
smart blob space or a reduced footprint of the server or DataBlades. The
Informix installer provides options to install only a small footprint of the server
where you can add or remove the features as needed. For more information
about DataBlades, see 10.3, “DataBlades and bladelets” on page 352.

2.1.2 Installing Informix Server

IBM provides the Informix Server editions, described in 1.1, “Server options” on
page 2, in .zip, .tar, or .dmg format, depending on the platform on which
Informix Server is installed. You can install Informix Server using several
methods. The common installation methods include using the console, a GUI, or
silent mode.

Because we focus on Informix Client products for application development in this
book, we describe only the silent mode of Informix Server installation on a UNIX
platform. For other methods and platforms, refer to the individual installation PDF
file that comes with the product.

To perform a silent installation on UNIX, use the following steps:

1. Extract the compressed .tar file into any directory using the following
command:

tar -xvpf IIF.11.50.tar
26 IBM Informix Developer’s Handbook

2. Create the installation .ini file that specifies the installation options. You can
use the sample installation .ini file, server.ini, as a template. The
server.ini file is located in the directory that is used to extract the server
media package. Edit the following information in the server.ini file, and save
the file with a new name, for example myserver.ini:

– Change -P installLocation="/opt/IBM/informix" to the location of
directory where you want to install the product.

– Change -G licenseAccepted= option to true to accept the software
license. Otherwise, the installation process stops:

3. Start the silent installation with the following command:

./ids_install -silent -options myserver.ini

Performing these steps installs Informix Server in your specified directory along
with a demonstration instance by the name demo_on.

For more information about Informix installation and creating new instances, refer
to the installation guide PDF that comes with the media file.

2.1.3 Configuring Informix Server

The connectivity information allows a client application to connect to any IBM
Informix database server in the network. The connectivity data for a particular
database server includes the following connectivity data and information is
required:

� The host name of the computer or node on which the database server runs
� The type of connection that an application can use to connect to the server
� The service name or port number used by the database server
� The database instance (also called the database server name)

Even if the client application and the database server are on the same computer
or node, you might need to specify connectivity information for your client
application.

Connectivity on UNIX
On UNIX, the sqlhosts file contains the connectivity information. By default, this
file resides in the $INFORMIXDIR/etc directory. You can use the
INFORMIXSQLHOSTS environment variable to specify an alternative location for
the connectivity information. Edit this file according to the protocol that you are
using or the port number to which your client application will connect.
 Chapter 2. Setting up an Informix development environment 27

A typical sqlhosts file contains the following fields:

Server Protocol Hostname Service/Port Options

Here is an example:

demo_on onipcshm on_hostname on_servername k=0
demo_se seipcpip se_hostname sqlexec

Each line in the sqlhosts file defines the following information about an Informix
database server:

� Server

Specifies the name of the IBM Informix database server. This value normally
correspond to the value in the INFORMIXSERVER environment variable.

� Protocol

Specifies the protocol that is used for the communication with the database
server. It must be the same protocol that the database server uses.

� Hostname

Specifies the system where the Informix database server is running.

� Service/Port

Specifies the TCP port or service name, which must be defined in the
/etc/services file, that is used by the Informix database server to accept
incoming connections.

� Options

Specifies additional options for the communication, such as buffer size or
connection redirection rules.

APIs such as ESQL/C or ODBC rely on the sqlhosts file to obtain the
connection parameters for the database server.

Example 2-1 shows how a ESQL/C application connects to an Informix database
server.

Example 2-1 UNIX connection example

informix@kodiak:/work$ cat $INFORMIXDIR/etc/sqlhosts
#server protocol hostname service/port
demo_on onsoctcp kodiak demo_on_tcp

informix@kodiak:/work$ grep demo_on_tcp /etc/services
demo_on_tcp 9089/tcp # Service for demo_on IDS server

informix@kodiak:/work$ cat connect.ec
#include <stdio.h>
int main()
28 IBM Informix Developer’s Handbook

{
 EXEC SQL CONNECT TO 'stores_demo@demo_on';
 printf("Connected\n");
}
informix@kodiak:/work$ esql connect.ec -o connect
informix@kodiak:/work$./connect
Connected
informix@kodiak:/work$

The definition for the demo_on Informix Server specifies the communication
protocol that is used as onsoctcp. The system where the database server is
running is kodiak, and the TCP port that the server uses is demo_on_tcp. The
service name is defined as port 9089 in the /etc/services configuration file.

The ESQL/C example connects to the server and opens the stores_demo
database using the following instruction:

EXEC SQL CONNECT TO 'stores_demo@demo_on';

For more information about the sqlhosts file, refer to the IBM Informix Dynamic
Server (IDS) Information Center topic:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
admin.doc/ids_admin_0158.htm

Connectivity on a Windows system
You can set the connectivity on a Windows system using the setnet32.exe utility
that resides in the $INFORMIXDIR/bin directory. This utility is bundled with IBM
Informix Client Software Development Kit (Client SDK). Use this utility to create
or change the server name, protocol, service name, and host name. You also can
use the setnet32.exe utility to set any environment variable that Informix
products use.
 Chapter 2. Setting up an Informix development environment 29

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.admin.doc/ids_admin_0158.htm

Figure 2-1 shows the Server Information tab of the setnet32.exe utility on a
Windows system. Here, you can specify the server name, host IP address,
network protocol, and service name.

Figure 2-1 The Setnet32 Server Information tab

Enabling DRDA support
Since version 11.x, Informix supports the DRDA protocol. If you plan to use the
Data Server driver packages to connect to an Informix database server, you must
enable DRDA support as described in this section.

Note: If you specify the name of the service (for example sqlexec) rather than
the port number, make sure the service name that you use is defined in the
Windows system services file that is located in the
C:\WINDOWS\system32\drivers\etc directory.
30 IBM Informix Developer’s Handbook

Windows systems
Use the setnet32 utility to configure an Informix instance to use DRDA protocol:

1. Start the setnet32 utility from any command window.

2. Go to Server Information tab (Figure 2-2).

a. Select the required instance from the IBM Informix Server field. Our
example is demo_my.

b. Change the name of the Informix server, and specify a new name for the
DRDA alias, for example demo_my_drda.

c. The HostName field is pre-filled. If it is not, enter your host name or IP
address.

d. Change the Protocolname field from olsoctcp to drsoctcp to make it
DRDA compliant.

e. Change the Service Name field to specify the service name or port
number that the DRDA alias will use.

Figure 2-2 Configuring DRDA support

3. Click Apply, and then click OK.

After adding all the connection details for the DRDA alias, the configuration file
for the Informix database server must be updated to link the new server definition
 Chapter 2. Setting up an Informix development environment 31

with the existing Informix instance. In our example, we use demo_my for the
Informix database server and demo_my_drda for the DRDA instance.

You can use the DBSERVERALIASES parameter in the onconfig file to specify
an alias for a database server, as shown in Example 2-2.

Example 2-2 Using the DBSERVERALIASES parameter

...
DBSERVERNAME demo_my # Name of default Dynamic Server
DBSERVERNAME or DBSERVERALIASES that uses a
DBSERVERALIASES - The list of up to 32 alternative UDRs,
DBSERVERALIASES demo_my_drda # List of alternate dbserver names
DBSERVERNAME or DBSERVERALIASES that uses ...
...

The database configuration file is located in etc directory of your Informix
database server. You can use the ONCONFIG environment variable to specify
the name of this file. The complete path using environment variables for the
database configuration file is:

� On a UNIX platform, $INFORMIXDIR\etc\$ONCONFIG
� On a Windows platform, %INFORMIXDIR%\etc\%ONCONFIG%

You must restart the Informix database engine for the changes to take effect.

After you complete these steps, the instance is now ready to accept connections
as a DRDA compliant server.
32 IBM Informix Developer’s Handbook

On a Windows system, you can enable the DRDA support for the demonstration
instance during the installation if you use the Custom installation option.
Figure 2-3 shows the installation panel where you enable the DRDA support.

Figure 2-3 Enable DRDA support for the default instance

Linux and UNIX systems
On Linux and UNIX systems, you can enable the DRDA support by editing the
following Informix configuration files:

� Edit the sqlhosts file specified in the $INFORMIXSQLHOSTS environment
variable, and add the following line:

<drda_name> drsoctcp <hostname> <drda_service_name>

where:

– <drda_name> is the name for the DRDA alias

– drsoctcp is the protocol used by the new alias

– <hostname> the name or IP address of the system that is running Informix
Server

– <drda_service_name> is the name of the TCP service or port number for
the DRDA instance
 Chapter 2. Setting up an Informix development environment 33

� Edit the Informix Server configuration file located in the etc directory of your
Informix Server directory to include the new database definition as an alias for
the existing Informix Server.

You can use the environment variables to access this file, for example
$INFORMIXDIR/etc/$ONCONFIG. This file is the file that contains a list of
configuration parameters for Informix Server. Example 2-3 shows the
configuration file that we used in our database server.

Example 2-3 Linux onconfig file sample

informix@irk:/usr3/11.50$ grep DBSERV $INFORMIXDIR/etc/$ONCONFIG
DBSERVERNAME - The name of the default database server
DBSERVERALIASES - The list of up to 32 alternative UDRs,
DBSERVERNAME or DBSERVERALIASES that uses a
DBSERVERNAME demo_my
DBSERVERALIASES demo_my_drda

You must restart Informix Server for these changes to take effect.

You can find additional information about the sqlhosts file at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/i
ds_admin_0158.htm

2.2 Client setup

Informix is a low-administration, easy-to-use, and embeddable database that
supports various application development languages and technologies, such as
Java, .NET, PHP, and Web Services. Informix can handle XML data easily and
can be extended to handle new data sets using DataBlades.

In this section, we describe how to install and configure Informix Client products
to support the application development that you need.

2.2.1 Informix Client options

IBM offers the following Informix Client products that you can use to develop and
use an IBM Informix database server:

� IBM Informix Client Software Development Kit (Client SDK) includes several
APIs that are designed for developing with an Informix database.

� IBM Informix Connect is a runtime version of Client SDK.
34 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0158.htm

� IBM Informix JDBC Driver is Java driver that is optimized for Informix
databases.

� IBM Data Server Client includes the API tools that are needed for
development with IBM databases such as DB2 and Informix, plus functionality
for database administration and client/server configuration.

� IBM Data Server Runtime Client is the runtime version of the IBM Data Server
Client.

� IBM Data Server Driver Package is a lightweight version of the IBM Data
Server Runtime that includes only the interfaces and drivers.

� IBM Data Server Driver for JDBC and SQLJ is a Java driver for IBM Data
Servers.

Client SDK and Informix Connect have distinct functions:

� Client SDK contains a group of application-programming interfaces (APIs)
that developers can use to write applications for Informix, plus other client
components. Client SDK must be installed on computers that application
programmers will use to write applications.

� Informix Connect contains runtime libraries of the Client SDK APIs, plus other
client components. Install Informix Connect on computers that users use to
connect to Informix database servers.

The same rule applies to IBM Data Server products. Do not use packages that
are designed for development, such as IBM Data Server Client, to deploy an
application. Some components, such as Informix JDBC Driver, do not have a
specific runtime version, so you can use the same product in both cases.

In addition to these products, you can use open source drivers, such as PHP or
Ruby, to develop with an IBM Informix database.
 Chapter 2. Setting up an Informix development environment 35

Figure 2-4 illustrates the options that are available to develop with an IBM
Informix database.

Figure 2-4 Available Informix Client products for application development

2.2.2 Installing and setting up Client SDK

IBM Informix Client Software Development Kit (Client SDK) is a collection of
components for developing and running client applications that connect to the
Informix database server. Client SDK bundles with the following components and
utilities:

� ESQL/C with XA support

� IBM Informix Object Interface for C++

� IBM Informix OLE DB Provider (Windows only)

� IBM Informix ODBC Driver with MTS support

� IBM Informix .NET Provider (Windows only)

� IBM Informix GLS

� The Global Security Kit (GSKit)

� Password Communication Support Modules (CSM)

� Documentation Viewer
36 IBM Informix Developer’s Handbook

� The finderr utility on UNIX systems and the Informix Error Messages utility
on Windows systems

� The iLogin utility (Windows only)

Starting from version 3.50.xC5, the IBM Data Server Driver Package is also
bundled with the Windows system version of Client SDK and Informix Connect.

Client SDK provides access to all the Informix database servers. Table 2-1 lists
the Informix database servers that supports Client SDK.

Table 2-1 Supported database servers

Some components, such as Informix OLE DB Provider, do not allow a connection
to an IBM Informix Standard Engine server. Refer to the component release
notes for more information:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.relnotes.do
c/relnotes_ClientSDK350xc7.html

Completing the preliminary tasks
Before you install Client SDK, perform the following preliminary tasks:

1. Determine the following locations:

– Media location: This directory is the directory where all the media files
reside.

– Installation location: This directory is the location where the installer
places all the binaries and the configuration files. This directory is
represented by the environment variable $INFORMIXDIR. If
$INFORMIXDIR is set, the defined location is the default installation
location.

– Java location: The script that is used during the installation process
requires the use of a Java virtual machine (JVM). A JVM is bundled
together with Client SDK. However, if required, it is possible to specify a
different JVM for the installation process. The minimum version is Sun
JRE 1.4.2.

Database server Versions

IBM Informix 7.x, 9.x,10.x and 11.50

IBM Informix Extended Parallel Server 8.50 and higher

IBM Informix Standard Engine 7.25

IBM Informix Online 5.20 and higher
 Chapter 2. Setting up an Informix development environment 37

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.relnotes.doc/relnotes_ClientSDK350xc7.html

2. Prepare the environment.

You need to check if you have the informix user and the informix group on
your computer. If you do not, create them. For additional information, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.igul.do
c/ids_in_005x.htm

Installing the Client SDK
Informix provides various methods for installing Client SDK. In this section, we
demonstrate using the GUI to install in both UNIX and Windows environments.

Installing Client SDK on UNIX using the GUI
To install Client SDK in GUI mode:

1. Start the installation GUI with the following command from the root user:

./installclientsdk -gui

Remember to set the DISPLAY environment variable to the window that you
want to project the installation. Figure 2-5 shows the Welcome panel.

Click Next.

Figure 2-5 Installation of Client SDK on UNIX Welcome panel

2. On the license agreement panel, select I accept the terms and the license
agreement and click Next.
38 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.igul.doc/ids_in_005x.htm

3. Specify the directory where you want to install Informix Client (Figure 2-6).
Enter the full path name. Click Next.

Figure 2-6 Specify the installation directory

4. Select Typical or Custom (Figure 2-7). A Custom installation allows you to
select the features to install. Click Next.

Figure 2-7 Select the type of installation
 Chapter 2. Setting up an Informix development environment 39

5. If you selected a Custom installation, you next need to select the features that
you want to install and click Next (Figure 2-8). If you want to install whatever
the installer offers, select a Typical installation.

Figure 2-8 Custom options to choose
40 IBM Informix Developer’s Handbook

6. The installer presents the summary of available space and the components
that you have chosen for installation, as shown in Figure 2-9. If needed, you
can go back and change the installation selections. Click Next to start the
installation.

Figure 2-9 Installation summary

7. Figure 2-10 shows that the installation is complete without any errors.

Figure 2-10 Installation complete without any errors
 Chapter 2. Setting up an Informix development environment 41

At this stage, the Client SDK installation is complete. If the Informix database
server is located on a different system, you might need to set up the connection
information and modify the sqlhosts file, using the details of your Informix
Server.

Installing Client SDK on a Windows system
Installation on a Windows system for the Client SDK is similar to UNIX the
installation except that the Windows system installation has the option to install
IBM Data Server Driver Package. If you select the option to install these drivers,
refer to “Installing the IBM Data Server Driver package” on page 44 for
Installation details.

Configuration utility
On Windows systems, the Client SDK comes bundled with the setnet32.exe
utility for configuring the Client SDK. The Client SDK has default values set and
is ready to use unless you want to change the protocol, server information, or any
environment variable under which the client application runs.

The setnet32.exe utility sets environment variables and network parameters that
IBM Informix products use at run time. The environment variables and
connectivity parameters are stored in the Windows system registry and are valid
for every Informix Client product that you install, except Informix JDBC Driver.

The setnet32.exe utility has the following tabs:

� The Environment tab allows you to set environment variables.

� The Server Information tab allows you to set database server network
information.

� The Host Information tab allows you to set your host computer and login
information.

� The About Setnet32 tab provides information about the setnet32.exe utility.

For more information about these tabs, refer to the Client SDK installation PDF
file that comes with Client SDK.

Special consideration for 32- and 64-bit products
Beginning with version 3.50.FC4, you can install both 32-bit and 64-bit Client
SDK on the same Windows system.

Before installing the version 3.50.FC4 product, you must uninstall the existing
version 3.50.FC3 or earlier Client SDK from your system.
42 IBM Informix Developer’s Handbook

To uninstall your existing products, use one of the following methods:

� Use the Add/Remove program.

� Run the setup.exe program from the installed product media. When the
Maintenance Menu displays, select Remove.

You must install the new 32-bit and 64-bit products in separate directories.

The 32-bit Client SDK installs in the following directory by default:

C:\Program Files (x86)\IBM\Informix\Client-SDK

The 64-bit Client SDK installs in the following directory by default:

C:\Program Files\IBM\Informix\Client-SDK

The 64-bit product installation adds a suffix to the Program group folder and the
Add/Remove entry. This suffix provides an easy identification between the 32-bit
(no suffix) and 64-bit (suffix) product installations. For more information, refer to
the release notes.

2.2.3 Setting up IBM Data Server drivers

Several types of IBM Data Server Clients and Drivers are available.

The following IBM Data Server Clients are available:

� IBM Data Server Client, contains all the APIs and tools that are needed for
development against DB2 and Informix databases, including tools for remote
administration.

� IBM Data Server Runtime Client, contains all the APIs but only the minimum
number of utilities for setup and configure the development environment.

� IBM Data Server Driver Package, contains only the APIs and drivers without
any additional tools.

The client products contain the APIs and drivers plus additional tools that are
designed for remote database administration and configuration of the client
environment.

The following IBM Data Server Drivers are available:

� IBM Data Server Driver for JDBC and SQLJ
� IBM Data Server Driver for ODBC and CLI
� IBM Data Server Driver for .NET
� IBM Data Server open source drivers such as PHP or Ruby
 Chapter 2. Setting up an Informix development environment 43

You can download some of these components and install them as separate
products.

Each IBM Data Server Client and driver provides a particular type of support:

� For Java applications only, use IBM Data Server Driver for JDBC and SQLJ.

� For applications using ODBC or CLI only, use IBM Data Server Driver for
ODBC and CLI

� For applications using ODBC, CLI, .NET, OLE DB, PHP, Ruby, JDBC, or
SQLJ, use IBM Data Server Driver Package.

� IBM Data Server Runtime Client and IBM Data Server Client includes all of
above drivers and some functions of DB2.

In this section, we discuss the installation and configuration of the following
drivers for UNIX and Windows platforms:

� IBM Data Server Driver for JDBC and SQLJ
� IBM Data Server Driver for ODBC and CLI
� IBM Data Server Driver Package

For the installation and configuration of IBM Data Server Runtime Client and IBM
Data Server Client, refer to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.s
wg.im.dbclient.install.doc/doc/c0022615.html

Installing the IBM Data Server Driver package
The IBM Data Server Driver package is a lightweight solution and the
recommended package for user code deployment. It provides robust runtime
support for applications using ODBC, CLI, .NET, OLE DB, PHP, Ruby, JDBC, or
SQLJ without the need of installing Data Server Runtime Client or Data Server
Client. Here we discuss the installation of the drivers presented under the IBM
Data Server Driver Package.

Installing the driver package on UNIX and Linux
You can download the IBM Data Server Driver Package and individual drivers
such as IBM Data Server Driver for JDBC and SQLJ from the IBM Support and
downloads website at:

http://www.ibm.com/support/docview.wss?rs=4020&uid=swg21385217

Extract IBM Data Server Drivers Package to an empty directory after you
download it.

If you want to install the complete IBM Data Server Driver Package, run the
installIDSDriver command. This driver package includes database drivers for
44 IBM Informix Developer’s Handbook

http://www.ibm.com/support/docview.wss?rs=4020&uid=swg21385217
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.swg.im.dbclient.install.doc/doc/c0022615.html

Java, ODBC/CLI, PHP, and Ruby on Rails, each of which is stored in its own
subdirectory. The Java and ODBC/CLI drivers are compressed.

If you want to install individual drivers that are contained in the driver package,
follow these steps (first two steps are common for all drivers):

1. Extract the Data Server Driver Package archive onto the target system.

2. For the Java and ODBC/CLI drivers, extract the driver file into the chosen
installation directory.

3. Install the driver that you need:

– Java

This driver provides support for client applications written in Java using
JDBC. The path and file name of the Java driver are

• Path: jdbc_sqlj_driver/platform
• File name: db2_db2driver_for_jdbc_sqlj.zip

For additional information, refer to “Installing IBM Data Server Driver for
JDBC and SQLJ” on page 51.

– ODBC and CLI

The open source drivers included in the IBM Data Server Driver Package,
such as PHP or Ruby driver, require the use of the Data Server CLI driver
for connection to the database engine. If you plan to use any of these
drivers, you need to install the ODBC driver.

• Path: odbc_cli_driver/platform
• File name: ibm_data_server_driver_for_odbc_cli.tar.Z

For additional information, refer to “Installing IBM Data Server Driver for
ODBC and CLI” on page 52.

– PHP

The IBM_DB2 and PDO_IBM are the PHP extensions for IBM Data
Servers including Informix. Installing the IBM_DB2 or PDO_IBM
extensions enables any application in the PHP environment to interact with
Informix database servers. The extensions included with the IBM Data
Server Driver Package might be of a lower version as compared to the one
available on the PHP repository.

Download the latest extension from PHP repository page because it might
contain important fixes and new features:

• For IBM_DB2

http://pecl.php.net/package/ibm_db2

• For PDO_IBM

http://pecl.php.net/package/pdo_ibm
 Chapter 2. Setting up an Informix development environment 45

http://pecl.php.net/package/ibm_db2
http://pecl.php.net/package/pdo_ibm

The PHP driver path and file names in the IBM Data Server Driver
Packages are as follows:

• Path

php_driver/platform/php32 or php_driver/platform/php64

• Files

ibm_db2_n.n.n.so and pdo_ibm_n.n.n.so

where n represents the version of the extension.

Consider the following information before you install the PHP driver:

• Prerequisite: The PHP drivers require the ODBC/CLI driver that is also
included in the IBM Data Server Driver Package to be installed.

• Installation instructions: The following online information explains how
to install PECL extensions.

Through the source code:

http://www.php.net/manual/en/install.pecl.phpize.php

Through the PECL command:

http://www.php.net/manual/en/install.pecl.pear.php

Installing the IBM_DB2 extension:

http://www.php.net/manual/en/ibm-db2.installation.php

Installing the PDO_IBM extension:

http://www.php.net/pdo_ibm

– Ruby on Rails

The IBM_DB adapter and driver as a gem enables any application in the
Ruby environment, including Rails, to interact with IBM data servers. The
path, file name, and installation information for Ruby on Rails Driver is as
follows:

• Path

ruby_driver/platform

• File

ibm_db-0.10.0.gem
46 IBM Informix Developer’s Handbook

http://www.php.net/manual/en/install.pecl.phpize.php
http://www.php.net/manual/en/install.pecl.pear.php
http://www.php.net/manual/en/ibm-db2.installation.php
http://www.php.net/pdo_ibm

Consider the following information before you install the Ruby on Rails
Driver:

• Prerequisite: The Ruby on Rails Driver requires the ODBC/CLI driver
that is also included in the IBM Data Server Driver Package to be
installed.

• To install the Ruby on Rails Driver, from the location of the gem file, run
the following command:

gem install ibm_db-0.10.0.gem

You are now ready to use any of these drivers on UNIX or Linux.

Installing the driver package on Windows
You can obtain the Data Server Driver Package for windows from the same site
as the package for UNIX:

http://www.ibm.com/support/fixcentral/

The file for Windows is an .exe file, which is the installation file for the driver
package.

To install the driver package:

1. Start the installation by executing the .exe file. The welcome window opens,
as shown in Figure 2-11. Click Next.

Figure 2-11 Welcome panel for Data Server Driver Package
 Chapter 2. Setting up an Informix development environment 47

http://www.ibm.com/support/fixcentral/

2. On the Software License Agreement panel, accept the license agreement,
and click Next.

3. Specify the installation directory in the Custom Setup panel (Figure 2-12). You
can change the installation directory to a location other then the default. Click
Next.

Figure 2-12 Change the installation directory
48 IBM Informix Developer’s Handbook

4. The IBM data server driver copy name is used to identify a location where
IBM Data Server Driver Package is installed on the computer. Enter the copy
name for the location that you have chosen, the default is IBDBCL1
(Figure 2-13). Click Next.

Figure 2-13 Set the IBM data server driver copy name
 Chapter 2. Setting up an Informix development environment 49

5. Verify the installation selections on the summary panel (Figure 2-14). If
everything is correct, begin the installation by clicking Install.

Figure 2-14 Summary of the installation
50 IBM Informix Developer’s Handbook

6. When the installation completes, the complete panel opens as shown in
Figure 2-15. Click Finish. The installation of Data Server Driver for Informix is
complete.

Figure 2-15 Installation complete

Installing IBM Data Server Driver for JDBC and SQLJ
To install IBM Data Server Driver for JDBC and SQLJ:

1. Obtain Java SDK.

Before you install the IBM Data Server Driver for JDBC and SQLJ, you must
have an SDK for Java installed on your computer:

– For JDBC 3.0 functions, you need Java SDK 1.4.2 or later.
– For JDBC 4.0 functions, you need Java SDK 6 or later.

2. Download the .zip file for the latest version of the IBM Data Server Driver for
JDBC and SQLJ at:

http://www.ibm.com/software/data/support/data-server-clients/download.html

Note: The Windows installer of the IBM Data Server Driver Package does not
provide any option to install individual components. All the drivers and
interfaces that are included in the package are installed by default.
 Chapter 2. Setting up an Informix development environment 51

http://www.ibm.com/software/data/support/data-server-clients/download.html

3. Extract the IBM Data Server Driver for JDBC and SQLJ compressed file to the
installation location. The compressed file contains the following files:

– db2jcc.jar
– db2jcc4.jar
– sqlj.zip
– sqlj4.zip

4. Modify the CLASSPATH environment variable to include the appropriate files,
You can set the CLASSPATH using the following command:

java -classpath <dir>\<file>.jar

– For JDBC:

Include the db2jcc.jar file in the CLASSPATH if you plan to use the
version of the IBM Data Server Driver for JDBC and SQLJ that includes
only JDBC 3.0 and earlier functions.

Include the db2jcc4.jar file in the CLASSPATH if you plan to use the
version of the IBM Data Server Driver for JDBC and SQLJ that includes
JDBC 4.0 and earlier functions.

– For SQLJ

The steps are similar to the JDBC except that the files to be included in
CLASSPATH are sqlj.zip and sqlj4.zip.

For more information regarding configuration and customizing of the IBM Data
Server Driver for JDBC and SQLJ, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jccids.doc/
ids_jcc_0008.htm

Installing IBM Data Server Driver for ODBC and CLI
The IBM Data Server Driver for ODBC and CLI solution is designed mainly for
independent software vendor (ISV) deployments.To install the IBM Data Server
Driver for ODBC and CLI:

1. Depending on your operating system, download the compressed file that is
available at:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?land=en_US&source
=swg-informixfpd

2. Extract the file to an installation directory of your choice.

Important: Include either the db2jcc.jar or the db2jcc4.jar files in the
CLASSPATH. Do not include both files.
52 IBM Informix Developer’s Handbook

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?land=en_US&source=swg-informixfpd
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jccids.doc/ids_jcc_0008.htm

3. On Mac OS X, set the DYLD_LIBRARY_PATH environment variable to the
clidriver/lib directory path.

For specific information about the setup and configuration of the ODBC, refer to
3.2, “Setup and configuration” on page 58.

2.2.4 Setting up Informix JDBC

Informix JDBC is a platform independent, industry-standard driver that provides
enhanced support for distributed transactions. It consists of a set of interfaces
and classes written in the Java programming language which can run on AIX,
HP-UX, Linux, Solaris, Windows, and all other platforms that support Java. It also
supports extensibility with a user-defined type (UDT) routine manager that
simplifies the creation and use of UDTs.

JCC support is available through the IBM Data Server Driver package that has a
driver to run Java application using JCC.

This section describes how to install Informix JDBC Driver, which is bundled with
the Informix database server. There is a separate JDBC directory with a .jar file
inside when you extract the Informix database server from the installation media.

Informix JDBC Driver, Version 3.50, strives to be compliant with the Sun
Microsystems JDBC 3.0 specification. Nearly all the features that are required for
the Sun Microsystems JDBC 3.0 specification have the specified behavior. For
the Sun Microsystems JDBC 3.0 driver optional features, if the feature is
supported by IBM Informix Version 11.50, then it is supported by Informix JDBC
Driver, Version 3.50.

Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4). Thus, when
you use Informix JDBC Driver in a Java program that uses the JDBC API to
connect to an Informix database, your session connects directly to the database
or database server without a middle tier

Installing the JDBC driver
The JDBC driver installation procedure is same for both Windows and UNIX
platforms.

To install the JDBC driver in console mode, use the following command:

java -cp dir/setup.jar run -console
 Chapter 2. Setting up an Informix development environment 53

For a silent installation on both Windows and UNIX, run the following command
from a command prompt:

java -cp <dir>/setup.jar run -silent -P
product.installLocation=<destination-dir>

where:

� <dir> is the location of the setup.jar file
� <destination-dir> is the directory where you want to install the JDBC driver

The installation is complete when the command finishes executing. If you want to
log information during the installation, specify the -log parameter.

To install Informix JDBC Driver in GUI mode on Windows:

1. Start the GUI mode installation with the following command:

java -cp dir/setup.jar run

The Welcome panel opens (Figure 2-16). Click Next.

Figure 2-16 Starting panel for JDBC informix installation

2. Accept the license agreement, and click Next.
54 IBM Informix Developer’s Handbook

3. Specify the installation directory or use the default location as shown in
Figure 2-17, and click Next.

Figure 2-17 Specify the installation directory

4. Review the summary information that displays (Figure 2-18), and click Next
complete the installation.

Figure 2-18 Summary window
 Chapter 2. Setting up an Informix development environment 55

Configuring the JDBC driver
To use JDBC driver in an application, you must set the CLASSPATH environment
variable to point to the driver files. The CLASSPATH environment variable tells
the JVM and other applications where to find the Java class libraries that are
used in a Java program-log parameter.

UNIX
Use one of the following methods to set the CLASSPATH environment variable
on a UNIX system:

� Add the full path name of the ifxjdbc.jar file to CLASSPATH:

setenv CLASSPATH /jdbcdriv/lib/ifxjdbc.jar:$CLASSPATH

� Extract the ifxjdbc.jar file, and add its directory to CLASSPATH:

cd /jdbcdriv/lib
jar xvf ifxjdbc.jar
setenv CLASSPATH /jdbcdriv/lib:$CLASSPATH

Windows system
Use one of the following methods to set the CLASSPATH environment variable
on a Windows system:

� Add the full path name of the ifxjdbc.jar file to CLASSPATH:

set CLASSPATH=c:\jdbcdriv\lib\ifxjdbc.jar;%CLASSPATH%

� Extract the ifxjdbc.jar file, and add its directory to CLASSPATH:

cd c:\jdbcdriv\lib
jar xvf ifxjdbc.jar
set CLASSPATH=c:\jdbcdriv\lib;%CLASSPATH%

You are now ready to develop a Java application using JDBC.
56 IBM Informix Developer’s Handbook

Chapter 3. Working with the ODBC
driver

This chapter discusses the configuration and development of applications using
Open Database Connectivity (ODBC) interfaces to access an Informix database
server.

This chapter includes the following topics:

� ODBC and Informix
� Setup and configuration
� Developing an ODBC application

3

© Copyright IBM Corp. 2010. All rights reserved. 57

3.1 ODBC and Informix

ODBC is a software API method based on the X/Open Call Level Interface to
access data from a database management system. ODBC allows developers to
write database applications without having to know a proprietary interface for a
specific database. In an ODBC environment, the ODBC driver is the component
that directly communicates with the database server. It receives calls from the
application or the ODBC Driver Manager and converts those calls into messages
that the database server can understand.

The following ODBC drivers for Informix are available:

� IBM Informix ODBC Driver
� IBM Data Server Driver for ODBC and CLI (CLI Driver)

3.2 Setup and configuration

In this section, we discuss the setup and configuration parameters of the ODBC
driver.

3.2.1 IBM Informix ODBC Driver

The Informix ODBC Driver is installed by default as part of Informix Client
Software Development Kit (Client SDK). It is based on the Microsoft Open
Database Connectivity (ODBC) Version 3.0 standard.

Table 3-1 lists the Informix database server that support Informix ODBC.

Table 3-1 Supported databases

Windows system configuration
On a Windows system, the ODBC drivers is registered automatically within the
system during the Informix installation process.

Database server Versions

IBM Informix 10.0,11.10,11.50

IBM Informix Extended Parallel Server 8.50 and higher

IBM Informix Standard Engine 7.25

IBM Informix Online 5.20 and higher
58 IBM Informix Developer’s Handbook

The following directory is the default installation directory:

C:\Program Files\IBM\Informix\Client-SDK

The INFORMIXDIR environment variable points to the directory where the
product was installed.

The ODBC driver requires that additional libraries are loaded. These libraries are
located in the %INFORMIXDIR%\bin directory. Make sure that this directory is part
of your PATH variable.

The name of the ODBC driver depends on the version:

� IBM Informix ODBC Driver: For the Windows 32-bit driver, see Figure 3-1.

Figure 3-1 Windows x86 ODBC driver administrator

Note: If you install a 32-bit version of Client SDK on a Windows x64, the
default directory is C:\Program Files (x86)\IBM\Informix\Client-SDK.
 Chapter 3. Working with the ODBC driver 59

� IBM Informix ODBC Driver (64-bit): for the Windows 64-bit driver. See
Figure 3-2.

Figure 3-2 Windows x64 ODBC driver administrator

To create an Informix ODBC Data Source (DSN), open the ODBC Administrator,
choose a DSN type, and select the Informix ODBC driver, the DSN-configuration
parameters are common to both drivers (32-bit and 64-bit).

Note: The default ODBC Data Source Administrator on a Windows x64
system is the 64-bit version. If you want to create a 32-bit ODBC DSN you
must use the 32-bit version
C:\WINDOWS\SysWOW64\odbcad32.exe
60 IBM Informix Developer’s Handbook

Figure 3-3 shows the Informix ODBC Connection tab.

Figure 3-3 Connection parameters

Table 3-2 lists the required DSN parameters. If you have already defined an
Informix server using the setnet32.exe utility, which is a component of Client
SDK, most of these values are updated automatically when selecting an Informix
server from the drop-down box.

Table 3-2 Required DSN values

Parameter Description

Data source name Name of the DSN

Server name Name of the Informix database server

Host name Name or IP address of the computer where the database server
runs

Service Name or value of the tcp service used by the database server

Protocol Communication Protocol used by the database server

Database Name of the database to which the DSN connects by default
 Chapter 3. Working with the ODBC driver 61

You can set optional configuration parameters in the Environment and Advanced
tabs (Figure 3-4).

Figure 3-4 Environment parameters

Table 3-3 describe the parameters for the Environment tab.

Table 3-3 Environment parameters

Parameter Description

Client Locale Locale for the client machine

Database Locale Locale used when the database was created

Use Server Database Locale Using this option the Database Locale is automatically
retrieved from the database

Translation Library Code set conversion library

Translation Option Options for a third-party conversion library

Cursor Behavior Close or preserve a cursor when a transaction is
resolved

VMB Character How to report the length for Varying Multi byte
characters

Fetch Buffer Size Size of the communication data package

Isolation Level Default Isolation Level for the connection
62 IBM Informix Developer’s Handbook

Figure 3-5 shows the Advanced tab configuration parameters.

Figure 3-5 Advanced parameters

Table 3-4 describes the parameters for the Advanced tab.

Table 3-4 Advanced parameters

Note: The code set value for the Client Locale parameter is determined by the
code set used in the application, which in most cases is the same as the
operating system. The default code set on a Windows system is CP1252.

The default code set for an Informix database is en_us.8859-1 (ISO 8859-1).
Some versions of the IBM Informix database server (for example, Version 9.40
and Version 10.00) allow a connection from a client with a mismatched
DB_LOCALE value. This option is no longer available. A client application
must set the Database Locale parameter (DB_LOCALE) to the same value as
the locale of the database (locale used at creation time).

The typical syntax for an Informix locale is language_territory@codeset.

Parameter Description

Auto Commit Optimization Optimize client-server communication deferring
the commit work after all the cursors are close.

Open-Fetch-Close Optimization Optimize client-server communication
automatically closing the cursor after all the
rows have been retrieved.
 Chapter 3. Working with the ODBC driver 63

Insert Cursors Buffers all the rows send by an insert cursor
and uses only one package to send the data to
the server.

Scrollable Cursors Enable scrollable cursors.

Report KeySet Cursors Report support for KeySet-driver cursors.

Report Standard ODBC Types Only Report standard ODBC types Only. Extended
types are mapped to standard ODBC types.

Describe Decimal Floating Point as
SQL_REAL / SQL_DOUBLE

Decimal columns without a scale are reported
as SQL_REAL or SQL_DOUBLE.

Do Not Use Lvarchar Do not report Lvarchar columns when using
SQL_VARCHAR.

Report Char columns as Wide Char
columns

Char columns described by SQLDescribeCol
are reported as Wide char columns
(SQLWCHAR)

length in Chars for
SQLGetDiagRecW

Returns the number of characters rather than
the number of bytes.

Parameter Description
64 IBM Informix Developer’s Handbook

For more information about each one of these parameters, place the cursor over
a parameter, and press F1 (Figure 3-6).

Figure 3-6 ODBC DSN Help

UNIX configuration
On UNIX platforms, the default installation directory for Client SDK is the
/opt/IBM/informix directory.

The INFORMIXDIR environment variable should point to the directory where the
product was installed.

On UNIX platforms, an ODBC driver manager is not normally supplied as part of
the operating system. Client SDK does not include an ODBC driver manager
library, however, the Client SDK does have a Driver Manager Replacement
(DMR) library which provides most of the features of an ODBC driver manager.

If the application does not use an ODBC driver manager, such as unixODBC or
Data Direct Driver Manager, the application must be linked directly to the Informix
ODBC libraries. The ODBC libraries are located in the $INFORMIXDIR/lib/cli
directory.
 Chapter 3. Working with the ODBC driver 65

Table 3-5 shows the ODBC libraries that are included with Client SDK.

Table 3-5 UNIX ODBC libraries

The shared-library path environment variable specifies the library search path.
This variable should contains at least $INFORMIX/lib, $INFORMIXDIR/lib/esql,
and $INFORMIXDIR/lib/cli for the ODBC driver to work.

There are three configuration files for the ODBC driver:

� sqlhosts
� odbc.ini
� odbcinst.ini

The sqlhosts file
This text file contains most of the information that is required to connect to an
IBM Informix database server.

The default location for this file is the $INFORMIXDIR/etc/sqlhosts directory. You
can use the INFORMIXSQLHOSTS environment variable to point to a different
location.

Example 3-1 shows a simple sqlhosts file.

Example 3-1 The sqlhosts file

#server protocol hostname service/port
on_demo onsoctcp kodiak 9088

Library Description

libifcli.a or libcli.a Static version for single (nonthreaded)

libifcli.so or iclis09b.so Shared version for single (nonthreaded)

libthcli.a Static version for multithreaded library

libthcli.so or iclit09b.so Shared version for multithreaded library

libifdrm.so or idmrs09a.so Shared library for DMR (thread safe)

Note: The information in the sqlhosts file is also used by all the other Client
SDK components and by the Informix database server. Be aware that any
changes in this file can have an impact in other clients and servers.

On a Windows system, instead of using a text file, this information is stored in
the registry through the setnet32.exe utility.
66 IBM Informix Developer’s Handbook

For more information about the sqlhosts file, refer to the Client/Server
Communications manual at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/i
ds_admin_0158.htm

The odbcinst.ini file
This file contains a list of installed ODBC drivers on the UNIX system and
specific attributes for each driver, such as the location of the shared library.

The default location of this file is under the home directory as
$HOME/.odbcinst.ini. A sample odbcinst.ini file is located in the
$INFORMIXDIR/etc directory.

Example 3-2 shows a simple odbcinst.ini file.

Example 3-2 The odbcinst.ini file

;---
[ODBC Drivers]
IBM INFORMIX ODBC DRIVER=Installed
[IBM INFORMIX ODBC DRIVER]
Driver=/extra/informix/lib/cli/iclit09b.so
Setup=/extra/informix/lib/cli/iclit09b.so
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=03.51
FileUsage=0
SQLLevel=1
smProcessPerConnect=Y

The odbinst.ini file has two sections:

� ODBC Drivers: Lists the ODBC drivers installed in the system.
� Driver Properties: Lists the properties for a specific ODBC driver.

Table 3-6 lists the parameters in the Driver Properties section.

Table 3-6 Parameters in the Driver Properties section

Keyword Description

Driver Location of the ODBC library

Setup Location of the Setup library

APILevel ODBC interface conformance level that the driver supports

ConnectFunctions Support for SQLConnect, SQLDriverConnect, and
SQLBrowserConnect
 Chapter 3. Working with the ODBC driver 67

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0158.htm

The odbc.ini file
The odbc.ini file is the data source configuration information. The default
location of this file is under the home directory as $HOME/.odbc.ini.

Alternatively, you can use the ODBCINI environment variable to point the
odbc.ini to a different location. A sample odbc.ini file is located in the
$INFORMIXDIR/etc directory.

Example 3-3 shows a simple odbc.ini file.

Example 3-3 The odbc.ini file

[ODBC Data Sources]
Infdrv1=IBM INFORMIX ODBC DRIVER
;
[Infdrv1]
Driver=/extra/informix/lib/cli/iclis09b.so
Description=IBM INFORMIX ODBC DRIVER
Database=stores_demo
LogonID=odbc
pwd=odbc
Servername=demo_on
CursorBehavior=0
CLIENT_LOCALE=en_us.8859-1
DB_LOCALE=en_us.8859-1
TRANSLATIONDLL=/extra/informix/lib/esql/igo4a304.so
;
[ODBC]
;UNICODE=UCS-4
;
; Trace file Section
;
Trace=0
TraceFile=/tmp/odbctrace.out
InstallDir=/extra/informix
TRACEDLL=idmrs09a.so

DriverODBCVer Supported version of the ODBC driver

FileUsage How handle File-system DSN

SQLLevel Type of SQL-92 grammar supported

Keyword Description
68 IBM Informix Developer’s Handbook

This file contains three sections:

� ODBC Data Sources: DSN name and description of the driver used
� Data Source Specification: Configuration parameters for this particular DSN
� ODBC: Global options such as Unicode mode or Tracing

Table 3-7 lists the available parameters for the odbc.ini configuration file.

Table 3-7 Parameters for the odbc.ini file

Keyword Description

Driver Location of the ODBC shared library

Description DSN description

Database Database name

LogonID User Id

pwd Password

Server Database server

CLIENT_LOCALE Locale used by the client application

DB_LOCALE Locale of the database

TRANSLATIONDLL Location of the code set conversion library

CURSORBEHAVIOR Close or preserve a cursor when a
transaction is resolved

DefaultUDTFetchType Default type for a UDT (SQL_C_BINARY
or SQL_C_CHAR)

ENABLESCROLLABLECURSORS Enable Scrollable cursors

ENABLEINSERTCURSORS Optimize insert cursors process

OPTIMIZEAUTOCOMMIT Defer the commit message after all cursor
are closed

NEEDODBCTYPESONLY Extended types are mapped to standard
ODBC types

OPTOFC Close cursors after all the rows have been
fetched

REPORTKEYSETCURSORS Report support for keyset-driven cursors

FETCHBUFFERSIZE Set the size of the fetch buffer
 Chapter 3. Working with the ODBC driver 69

3.2.2 IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI (CLI Driver) is installed as part of
the IBM Data Server Driver Package or as a separate product. The IBM Data
Server Package is bundle with Client SDK. It allows you to connect to IBM
Informix and IBM DB2 databases with the same set of libraries.

The communication protocol used is DRDA instead of the native Informix SQLI.
This driver is supported against Informix Version 11.10 and Version 11.50.

Windows system configuration
The IBM Data Server Driver installs in the following directory by default:

C:\Program Files\IBM\IBM DATA SERVER DRIVER

The ODBC driver is registered in the Windows system during the installation of
the IBM Data Server Driver package. The name of the ODBC driver is IBM DB2
ODBC Driver.

DESCRIBEDECIMALFLOATPOINT Describe float types as SQL_REAL or
SQL_DOUBLE

USESERVERDBLOCALE Use the server database locale

DONOTUSELVARCHAR Don’t report Lvarchar columns when using
SQL_VARCHAR

REPORTCHARCOLASWIDECHARCOL Char columns described by
SQLDescribeCol are reported as Wide
char columns (SQLWCHAR)

ISOLATIONLEVEL Default isolation level

UNICODE Type of Unicode (UCS-2, UCS-4)

TRACE Trace enable or disable

TRACEFILE Location of the trace file

TRACEDLL Trace library name (idmrs09a.so)

Keyword Description
70 IBM Informix Developer’s Handbook

Figure 3-7 shows the Drivers tab of the ODBC Data Source Administrator, which
lists both ODBC drivers:

� IBM DB2 ODBC DRIVER
� IBM INFORMIX ODBC DRIVER

Figure 3-7 ODBC Data Source Administrator

To create an ODBC Data Source (DSN) using the IBM Data Server Driver, open
the ODBC Administrator, choose a DSN type, and select the IBM DB2 ODBC
Driver.

Figure 3-8 shows the Add dialog box.

Figure 3-8 DSN Add dialog box
 Chapter 3. Working with the ODBC driver 71

If there is no database alias defined, you must add one with the connection
details of your IBM Informix database server (Figure 3-9).

Figure 3-9 DSN Settings dialog box

Figure 3-10 shows the Advanced Settings tab.

Figure 3-10 DSN Advanced Settings dialog box
72 IBM Informix Developer’s Handbook

Table 3-8 lists the minimum required parameters to connect to an Informix server.

Table 3-8 CLI parameters

The configuration settings are stored as a File-DSN (a text file that contains all
the information that is required to connect to the database) in the
%USERPROFILE%\db2cli.ini file. Example 3-4 shows a db2cli.ini file.

Example 3-4 The db2cli.ini file

[test]
Database=stores_demo
Protocol=TCPIP
Port=9089
Hostname=kodiak

For a complete description of all the CLI parameters, refer to the DB2 Information
Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.d
b2.luw.apdv.cli.doc/doc/r0007964.html

UNIX configuration
On UNIX platforms, the default installation directory for IBM Data Server Client
package is /opt/IBM/db2/V9.7. The library for the ODBC driver is libdb2.a,
which is located in the lib directory of your Data Server installation.

Similar to the installation on a Windows system, the ODBC configuration is
stored in the db2cli.ini file, which by default is included in the cfg directory of
your Data Server installation or is defined by the DB2CLIINI environment variable

CLI parameter Description

Hostname Name of the system where the Informix server is running

Port TCP Port used by the DRDA Informix alias

Protocol Transport protocol (TCP/IP)

Database Database server
 Chapter 3. Working with the ODBC driver 73

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html

Example 3-5 shows a simple db2cli.ini file.

Example 3-5 The db2cli.ini file

[test]
Database=stores_demo
Protocol=TCPIP
Port=9089
Hostname=kodiak

For more information about the db2cli.ini file, refer to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.d
b2.luw.apdv.cli.doc/doc/c0007882.html

3.2.3 Verifying connectivity

On a Windows system, you can use the ODBC Data Source Administrator to
verify the connection with the Informix database server.

When using the IBM Informix ODBC driver, you can verify the connection using
the Apply & Test Connection option, as shown in Figure 3-11.

Figure 3-11 Informix ODBC connection test
74 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.cli.doc/doc/c0007882.html

With the IBM Data Server Driver for ODBC, you can perform the connection test
using the Connect option, as shown in Figure 3-12.

Figure 3-12 IBM Data Server Driver connection test

Client SDK on UNIX does not include any tool to test an ODBC DSN. You can
use the C samples in $INFORMIXDIR\demo\cli to check whether the ODBC DSN
is working.

3.3 Developing an ODBC application

In this section, we describe how to connect to a database server, type mapping
between standard ODBC and IBM Informix, and how to perform basic operations
with the ODBC driver.

3.3.1 Connecting to the database

Typically, an ODBC application performs the following steps:

1. Connects to the database.

To connect to the database, the application must pass the connection details
to the ODBC driver. These details can be included directly in the connection
string or stored as a Data Source Name (DSN).

2. Processes SQL statements.
 Chapter 3. Working with the ODBC driver 75

The application sends SQL request to the ODBC driver to perform database
operations (insert, select, delete, update, and so on).

3. Resolves any open transaction.

If the application is using a transaction, it resolves (commits or rolls back) any
open transactions.

4. Terminates the connection, and frees the allocated resources.

These steps are done using the ODBC API functions. Figure 3-13 shows a
typical sequence of calls. The labels inside the gray boxes correspond with the
ODBC API functions that are used.

Figure 3-13 Typical ODBC calls used by applications

Example 3-6 shows a simple C program that connects to an ODBC DSN.
76 IBM Informix Developer’s Handbook

Example 3-6 A test_connect.c sample

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;

 if (argc != 2)
 {
 fprintf (stdout, "Please specify the name of a DSN!\n");
 return(1);
 }
 else

{
if (strstr (argv[1],"DRIVER")==NULL)
 sprintf((char *) connStrIn, "DSN=%s;", (char *)argv[1]);
else
 sprintf((char *) connStrIn, "%s;", (char *)argv[1]);
}

 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed!\n");
 return (1);
 }

 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "SQLSetEnvAttr failed!\n");
 return (1);
 }

 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (rc != SQL_SUCCESS)
 {
 Chapter 3. Working with the ODBC driver 77

 fprintf (stdout, "Connection Handle Allocation failed!\n");
 return (1);
 }

 rc = SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, 1000,

&connStrOutLen, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connectedion failed!\n");
 return (1);
 }

 fprintf (stdout, "Connected\n");

 SQLDisconnect (hdbc);

 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

You can compile this code on a Windows system using the following command:

cl /DWIN32 -I%INFORMIXDIR%\incl\cli odbc32.lib test_connect.c

Example 3-7 shows how to compile and run the sample.

Example 3-7 The test_connec.c sample output

c:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -I%INFORMIXDIR%\incl\cli
odbc32.lib /nologo test_connect.c
test_connect.c

D:\work>test_connect
Please specify the name of a DSN!

D:\workt>test_connect dummy_dsn
Connection failed!

D:\work>test_connect test
Connected

D:\work>
78 IBM Informix Developer’s Handbook

You can use the sample C program to perform a DSN-less connection.
Example 3-8 shows the sample C program with a DSN-less connection string
using the Informix ODBC driver and the Data Server driver for ODBC.

Example 3-8 A DSN-less connection

C:\work>test_connect "DRIVER={IBM INFORMIX ODBC
DRIVER};SERVER=demo_on;DATABASE=stores_demo;HOST=kodiak;PROTOCOL=onsoctcp;SERVI
CE=9088;UID=informix;PWD=password;";
Connected

C:\work>test_connect "driver={IBM DB2 ODBC
DRIVER};Database=stores_demo;hostname=kodiak;port=9089;protocol=TCPIP;
uid=informix; pwd=password"
Connected
C:\work>

3.3.2 Type mapping

The data types that are used on the database differ from the data types that are
used by your application. This section shows the data type mapping that is
needed when working with specific Informix data types with the Informix ODBC
driver.

When a query is executed by the application, the data returned by the Informix
server might be in a different format than what the application uses. The ODBC
driver converts the data that is passed between the application and the database
server. This process is invisible to the application. The only requirement for the
application is to specify the correct data types when calling the ODBC driver
functions.

The application sets ValueType and ParameterType when calling the bind
functions.

Example 3-9 shows the definition for one of the bind functions,
SQLBindParameter(). The ODBC driver converts the data type specified in
ValueType to the data type specified in ParameterType.

Example 3-9 SQLBindParameter definition

SQLBindParameter(
 SQLHSTMT StatementHandle, /* hstmt */
 SQLUSMALLINT ParameterNumber, /* ipar */
 SQLSMALLINT InputOutputType, /* fParamType */
 SQLSMALLINT ValueType, /* fCType */
 SQLSMALLINT ParameterType, /* fSqlType */
 SQLUINTEGER ColumnSize, /* cbColDef */
 Chapter 3. Working with the ODBC driver 79

 SQLSMALLINT DecimalDigits, /* ibScale */
 SQLPOINTER ParameterValuePtr, /* rgbValue */
 SQLINTEGER BufferLength, /* cbValueMax */
 SQLINTEGER *StrLen_or_IndPtr); /* pcbValue */

Example 3-10shows an SQLBindParameter() call where the application is binding
an SQL_C_BINARY parameter with an SQL_INFX_UDT_FIXED value.

Example 3-10 Using an SQLBindParameter() call

SQLBindParameter (
 hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_BINARY,
 SQL_INFX_UDT_FIXED,
 loptr_size,
 0,
 loptr_buffer,
 loptr_size,
 &loptr_valsize);

Table 3-9 shows the Informix-specific data type mapping that is used with the
Informix ODBC driver.

Table 3-9 Mapping for specific Informix data types

Informix SQL Informix ODBC driver

BIGINT SQL_INFX_BIGINT

BIGSERIAL SQL_INFX_BIGINT

BLOB SQL_IFMX_UDT_BLOB

BOOLEAN SQL_BIT

BYTE SQL_LONGVARBINARY

CLOB SQL_IFMX_UDT_CLOB

DATETIME SQL_TIMESTAMP

DISTINCT Any

IDSSECURITYLABEL Built-in DISTINCT OF VARCHAR(128)

INT8 SQL_BIGINT

INTERVAL DAY SQL_INTERVAL_DAY
80 IBM Informix Developer’s Handbook

For a complete list of Data Type mapping, refer to the IBM Informix ODBC Driver
Programmer’s Manual, which is available at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/si
i04979050.htm#sii04979050

INTERVAL DAY TO HOUR SQL_INTERVAL_DAY_TO_HOUR

INTERVAL DAY TO MINUTE SQL_INTERVAL_DAY_TO_MINUTE

INTERVAL DAY TO SECOND SQL_INTERVAL_DAY_TO_SECOND

INTERVAL HOUR SQL_INTERVAL_HOUR

INTERVAL HOUR TO MINUTE SQL_INTERVAL_HOUR_TO_MINUTE

INTERVAL HOUR TO SECOND SQL_INTERVAL_HOUR_TO_SECOND

INTERVAL MINUTE SQL_INTERVAL_MINUTE

INTERVAL MINUTE TO SECOND SQL_INTERVAL_MINUTE _TO_SECOND

INTERVAL MONTH SQL_INTERVAL_MONTH

INTERVAL SECOND SQL_INTERVAL_SECOND

INTERVAL YEAR SQL_INTERVAL_YEAR

INTERVAL YEAR TO MONTH SQL_INTERVAL_YEAR_TO_MONTH

LIST, MULTISET, SET Any

LVARCHAR SQL_VARCHAR

MONEY SQL_DECIMAL

NCHAR SQL_CHAR

NVARCHAR SQL_VARCHAR

OPAQUE (fixed) SQL_INFX_UDT_FIXED

OPAQUE (varying) SQL_INFX_UDT_VARYING

ROW Any

SERIAL SQL_INTEGER

SERIAL8 SQL_BIGINT

TEXT SQL_LONGVARCHAR

Informix SQL Informix ODBC driver
 Chapter 3. Working with the ODBC driver 81

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/sii04979050.htm#sii04979050
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/sii04979050.htm#sii04979050

If your application requires only Standard ODBC data types, you can enable the
Report Standard ODBC Types option in your DSN or connection string. When
this option is enabled, the ODBC driver handles smart large objects (BLOB and
CLOB) as though they were simple large objects (byte and text). The driver
generates the smart-large-object calls (ifx_lo_open, ifx_lo_write, and so on)
automatically.

This option changes the mapping for user define types (including MULTISET,
SET, ROW, and LIST) to SQL_C_CHAR.

These options are also available as the following ODBC attributes:

� SQL_INFX_ATTR_ODBC_TYPES_ONLY
� SQL_INFX_ATTR_LO_AUTOMATIC
� SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

3.3.3 Performing database operations

In this section, we show samples of how to use the ODBC driver to perform basic
operations with an Informix database. Most of these tasks are common to any
ODBC application, so we do not explain them in detail.

This section includes the following topics:

� Simple SQL statements
� Fetching data
� Using parameters
� Calling SQL routines
� Local transactions
� Distributed transactions

Simple SQL statements
You can run SQL statements directly using the SQLExecDirect() function. This
function is commonly used when there is no need to run the SQL statement more
than once. The ODBC driver prepares the statement, executes it, and frees the
resources in one operation.

Example 3-11 shows a sample of using the SQLExecDirect() function to set the
LOCK WAIT time out.

Example 3-11 SQLExecDirect() sample, Simple_sql.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
82 IBM Informix Developer’s Handbook

#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;

 int sqllen;
 SQLCHAR *sqlstmt;

 if (argc != 3)
 {
 fprintf (stdout, "Please specify the name of a DSN and the SQL Statement to
run!\n");
 return(1);
 }
 else

{
if (strstr (argv[1],"DRIVER")==NULL)
 sprintf((char *) connStrIn, "DSN=%s;", (char *)argv[1]);
else
 sprintf((char *) connStrIn, "%s;", (char *)argv[1]);

 sqllen = strlen((char *)argv[2]);
 sqlstmt = (SQLCHAR *) malloc (sqllen + sizeof(char));
 strcpy((char *)sqlstmt, (char *)argv[2]);

}

 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed!\n");
 return (1);
 }

 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "SQLSetEnvAttr failed!\n");
 return (1);
 }
 Chapter 3. Working with the ODBC driver 83

 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection Handle Allocation failed!\n");
 return (1);
 }

 rc = SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, 1000,
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection failed!\n");
 return (1);
 }

 fprintf (stdout, "Connected\n");

 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Statement Handle Allocation failed!\n");
 return (1);
 }

 rc = SQLExecDirect (hstmt, sqlstmt, SQL_NTS);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {
 fprintf (stdout, "SQLExecDirectW() failed!\n");
 return (1);
 }

 fprintf (stdout, "Executed SQL Statement:\n%s\n",sqlstmt);

 SQLDisconnect (hdbc);

 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-12 shows the result of running the sample program with different SQL
statements. In this example, we input the SQL statement directly from the
command line. In a real application, the SQL is normally constructed based on
customer input.

In this simple example, we also did not provide error information if the execution
fails. You can obtain error information using the SQLGetDiagRec() function, which
we discuss in 3.3.5, “Error handling” on page 112.
84 IBM Informix Developer’s Handbook

Example 3-12 Output of SQLDirectExec sample

c:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -I%INFORMIXDIR%\incl\cli
odbc32.lib /nologo simple_sql.c
simplesql.c

c:\work>simples_sql.exe test "set lock mode to wait 10"
Connected
Executed SQL Statement:
set lock mode to wait 10

c:\work>simple_sql.exe test "create temp table temp1(c1 int)"
Connected
Executed SQL Statement:
create temp table temp1(c1 int)

c:\work>simple_sql.exe test "invalid_SQL"
Connected
SQLExecDirectW() failed!

c:\work>

Fetching data
Example 3-13 demonstrates how to run a SELECT statement to retrieve data
from the server. To make the code clear, we have removed all the error handling.

Example 3-13 Select.c sample

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 SQLCHAR sqlstmt[100];
 SQLCHAR code[2+1];
 Chapter 3. Working with the ODBC driver 85

 SQLCHAR sname[15+1];
 SQLLEN lcode=0;
 SQLLEN lsname=0;

 sprintf((char *) connStrIn, "DSN=demo_on");
 sprintf((char *) sqlstmt, "SELECT code, sname FROM state where code<'CA'");

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, 1000, &connStrOutLen,

SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected\n");

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 SQLExecDirect (hstmt, sqlstmt, SQL_NTS);

 fprintf (stdout, "Executed SQL Statement:\n%s\n",sqlstmt);
 SQLBindCol (hstmt, 1, SQL_C_CHAR, &code, 3, &lcode);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, &sname, 16, &lsname);

 while (SQLFetch(hstmt)!=SQL_NO_DATA_FOUND)
 fprintf (stdout, "Fetched row: %s, %s\n",code, sname);

 SQLCloseCursor(hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-14 shows the output of this sample.

Example 3-14 Output of select.c

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -I%INFORMIXDIR%\incl\cli
odbc32.lib /nologo select.c
select.c

C:\work>select
Connected
Executed SQL Statement:
SELECT code, sname FROM state where code<'CA'
Fetched row: AK, Alaska
Fetched row: AL, Alabama
Fetched row: AR, Arkansas
Fetched row: AZ, Arizona

C:\work>
86 IBM Informix Developer’s Handbook

Using parameters
In most of the cases, an application runs the same SQL statement several times,
so it makes sense if the SQL statement is prepared and then used with different
values.

Example 3-15 demonstrates how to run a simple SQL SELECT statement using
an input parameter. The SQL statement is prepared and then executed with one
parameter.

Example 3-15 Example of a parametrized query, Select_param.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 SQLCHAR sqlstmt[100];
 SQLCHAR inputcode[2+1];
 SQLCHAR code[2+1];
 SQLCHAR sname[15+1];
 SQLLEN lcode = 0;
 SQLLEN lsname = 0;
 SQLSMALLINT datatype, decimaldigits, nullable;
 SQLUINTEGER paramsize;

 sprintf((char *) connStrIn, "DSN=demo_on");
 sprintf((char *) sqlstmt, "SELECT code, sname FROM state where code < ?");
 sprintf((char *) inputcode, "CA");

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 Chapter 3. Working with the ODBC driver 87

 fprintf (stdout, "Connected\n");

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

 SQLPrepare (hstmt, sqlstmt, strlen(sqlstmt));
 SQLDescribeParam(hstmt, 1, &datatype, ¶msize, &decimaldigits, &nullable);
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, datatype, paramsize,
decimaldigits, inputcode, 0, NULL);

 SQLExecute (hstmt);
 fprintf (stdout, "Executed SQL Statement:\n%s\nUsing: '%s'\n",sqlstmt,inputcode);

 SQLBindCol (hstmt, 1, SQL_C_CHAR, &code, sizeof(code), &lcode);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, &sname, sizeof(sname), &lsname);

 while ((rc = SQLFetch(hstmt))!=SQL_NO_DATA_FOUND)
 fprintf (stdout, "Fetched: %s, %s\n",code, sname);

 SQLCloseCursor(hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-16 shows the SQL statement that the program prepares and the
parameter that is used for the placeholder.

Example 3-16 Output for Select_param.c

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -ID:\infx\csdk350tc7\incl\cli
odbc32.lib /nologo select_param.c
select_param.c

C:\work>select_param
Connected
Executed SQL Statement:
SELECT code, sname FROM state where code < ?
Using: 'CA'
Fetched: AK, Alaska
Fetched: AL, Alabama
Fetched: AR, Arkansas
Fetched: AZ, Arizona

C:\work>
88 IBM Informix Developer’s Handbook

Calling SQL routines
In this section, we demonstrate how to call an SQL routine from an ODBC
application. The following example is a simple stored procedure that returns the
user name and session ID:

create procedure get_sid(user char(20)) returning char(100);
return 'user= '||trim(user)|| ' session= '||dbinfo('sessionid');
end procedure;

We use the following ODBC standard syntax for calling a database routine:

{? = call client_routine(?, ?,...)}

The first placeholder (?) is used only when the first parameter of the routine is an
output parameter. If the first parameter is not an output parameter, you can run
the routine (stored procedure or SQL function) using the following syntax:

{call client_routine(?, ?, ?, ?)}

Example 3-17 illustrates how to call the get_sid() SQL function.

Example 3-17 SPL function sample, Function.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 SQLCHAR sqlstmt[100];
 SQLCHAR errorn[20+1];
 SQLCHAR result[100+1];
 SQLLEN lresult = 0;

 sprintf((char *) connStrIn, "DSN=demo_on");
 sprintf((char *) sqlstmt, "{? = call get_sid(?)}");
 sprintf((char *) errorn, "informix");
 Chapter 3. Working with the ODBC driver 89

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected\n");

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

 SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,sizeof(result),0,
result, sizeof(result), &lresult);
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, strlen(errorn),0,
errorn, 0, NULL);

 SQLExecDirect (hstmt, sqlstmt, SQL_NTS);
 SQLFetch(hstmt);

 fprintf (stdout, "Executed SQL Statement:\n%s\nUsing: '%s'\n",sqlstmt,errorn);
 fprintf (stdout, "Value returned: %s\n",result);

 SQLCloseCursor(hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-18 shows the input parameter passed to the get_sid() procedure
and the return values.

Example 3-18 Output of Function.c

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -ID:\infx\csdk350tc7\incl\cli
odbc32.lib /nologo function.c
function.c

C:\work>function
Connected
Executed SQL Statement:
{? = call get_sid(?)}
Using: 'informix'
Value returned: user: informix session: 213

C:\work>

Local transactions
The default transaction mode for the Informix ODBC driver is auto-commit. The
transaction is committed automatically if the SQL statement runs successfully.
90 IBM Informix Developer’s Handbook

You can switch to manual-commit by setting the SQL_AUTOCOMMIT_OFF
attribute using the SQLSetConnectAttr() function. When an application sets
SQL_AUTOCOMMIT_OFF, the next SQL statement automatically starts a
transaction that remains open until the application calls SQLEndTran().

In manual mode, all the statements executed by the application are committed or
rolled back when the application calls SQLEndTran().

Having auto-commit set might be more convenient when running simple SQL
statements because there are less tasks to care about in the application code.
However, auto-commit gives less control to the developer than using the
manual-commit mode. When using auto-commit, there is no option to roll back a
particular change in the database or to insert a multiple rows as a batch
operation, which might improve the performance of the application.

Example 3-19 illustrates how to run a local transaction in manual mode.

Example 3-19 Transaction.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 SQLCHAR sqlstmt[100];
 SQLINTEGER cnum = 101;
 SQLSMALLINT datatype, decimaldigits, nullable;
 SQLUINTEGER paramsize;

 sprintf((char *) connStrIn, "DSN=demo_on");
 sprintf((char *) sqlstmt, "INSERT INTO orders(order_num,order_date,customer_num)
VALUES (0,current,?)");
 Chapter 3. Working with the ODBC driver 91

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected\n");

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

 SQLSetConnectAttr (hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, (SQLINTEGER)
NULL);

 SQLPrepare (hstmt, sqlstmt, strlen(sqlstmt));
 SQLDescribeParam(hstmt, 1, &datatype, ¶msize, &decimaldigits, &nullable);
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT, datatype, paramsize,
decimaldigits, &cnum, 0, NULL);

 while (cnum<105)
 {
 SQLExecute (hstmt);
 fprintf (stdout, "Executed SQL Statement:\n%s\nUsing: '%d'\n",sqlstmt,cnum);
 cnum++;
 }
 rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
 fprintf (stdout, "Transaction Rolled back\n");

 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-20 shows the output of the previous example. A local transaction is
created, five rows are inserted in the orders table, and then the transaction is
rolled back using SQLEndTran().

Example 3-20 Output of Trasaction.C

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -ID:\infx\csdk350tc7\incl\cli
odbc32.lib /nologo transact.c
transact.c

C:\work>del pp*

C:\work>transact.exe
Connected
Executed SQL Statement:
INSERT INTO orders(order_num,order_date,customer_num) VALUES (0,current,?)
Using: '101'
Executed SQL Statement:
92 IBM Informix Developer’s Handbook

INSERT INTO orders(order_num,order_date,customer_num) VALUES (0,current,?)
Using: '102'
Executed SQL Statement:
INSERT INTO orders(order_num,order_date,customer_num) VALUES (0,current,?)
Using: '103'
Executed SQL Statement:
INSERT INTO orders(order_num,order_date,customer_num) VALUES (0,current,?)
Using: '104'
Transaction Rolled back

C:\work>

Distributed transactions
On a Windows system, you can run a distributed transaction using the Microsoft
Distributed Transaction Coordinator (MSDTC) service.

Example 3-21 demonstrates how to run a distributed transaction. The example
opens two connections to two different database servers and enlists both
connections into the same distributed transaction.

Example 3-21 Transaction_dtc.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <txdtc.h>
#include <xolehlp.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc, hdbc2;
 SQLHENV henv;
 SQLHSTMT hstmt, hstmt2;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[100],connStrIn2[100];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 SQLCHAR sqlstmt[100];
 SQLINTEGER cnum = 101;
 SQLSMALLINT datatype, decimaldigits, nullable;
 SQLUINTEGER paramsize;
 Chapter 3. Working with the ODBC driver 93

 ITransactionDispenser *pTransactionDispenser = NULL;
 ITransaction * pITransaction;

 sprintf((char *) connStrIn , "DSN=server_1");
 sprintf((char *) connStrIn2, "DSN=server_2");
 sprintf((char *) sqlstmt, "INSERT INTO orders(order_num,order_date,customer_num)
VALUES (0,current,101)");

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc2);

 // Get DTC
 DtcGetTransactionManager(NULL, NULL,IID_ITransactionDispenser, 0, 0, NULL, (void**)
&pTransactionDispenser);

 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected to %s\n",connStrIn);

 SQLDriverConnect (hdbc2, NULL, connStrIn2, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected to %s\n",connStrIn2);

 //Start the transaction on DTC
 pTransactionDispenser->BeginTransaction
(NULL,ISOLATIONLEVEL_READCOMMITTED,0,NULL,&pITransaction);

 //Enlist the connections in distributed transaction
 SQLSetConnectAttr(hdbc, SQL_ATTR_ENLIST_IN_DTC,
(SQLPOINTER)pITransaction,SQL_IS_INTEGER);
 SQLSetConnectAttr(hdbc2, SQL_ATTR_ENLIST_IN_DTC,
(SQLPOINTER)pITransaction,SQL_IS_INTEGER);

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 SQLExecDirect (hstmt, sqlstmt, SQL_NTS);
 fprintf (stdout, "Executed SQL Statement:\n%s\nUsing: '%d'\n",sqlstmt,cnum);

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc2, &hstmt2);
 if (SQLExecDirect (hstmt2, sqlstmt, SQL_NTS)!=SQL_SUCCESS)
 {
 fprintf(stdout, "Rolling back global transaction\n");
 pITransaction->Abort(NULL,FALSE,FALSE);
 }
 else
 {
 pITransaction->Commit(0, XACTTC_SYNC_PHASEONE, 0);
 pITransaction->Release();
 fprintf(stdout, "Transaction Committed\n");
 }
94 IBM Informix Developer’s Handbook

 SQLFreeHandle(SQL_HANDLE_STMT,hstmt2);
 SQLFreeHandle(SQL_HANDLE_STMT,hstmt);
 SQLDisconnect (hdbc2);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc2);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-22 shows how to compile the sample and the output of the program.

Example 3-22 Output of Transact_dtc.cpp

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -I%INFORMIXDIR%\incl\cli
odbc32.lib xoleHlp.lib /nologo transaction_dtc.cpp
transaction_dtc.cpp

C:\work>transaction_dtc
Connected to DSN=server_1
Connected to DSN=server_2
Executed SQL Statement:
INSERT INTO orders(order_num,order_date,customer_num) VALUES (0,current,101)
Using: '101'
Transaction Committed

C:\work>

3.3.4 Handling special data types

This section describes how to work with the Informix specific data types, such as
smart large objects and complex data types.

Smart large objects
Smart large objects are a type of large objects supported by Informix. Smart
large objects are logically stored in a table column but physically stored in a
specific type of dbspaces called smart blob space (sbspace).

The information stored in the table column is structure that contains information
about the large object, such as the pointer to the location in the sbspace that

Note: Remember that the DSN must be accessible to the MSDTC service. In
Example 3-21 on page 93, test_1 and test_2 are both created as
System-DSN.
 Chapter 3. Working with the ODBC driver 95

contains the data or special attributes. Informix has two types of smart large
objects.

� BLOB: Stores binary data
� CLOB: Stores character data

A client application uses these data structures to perform random I/O operations
on the large data, such as open, read, or write operations. There are two options
for accessing smart large objects from an ODBC application:

� Use the smart-large-object ODBC API.

If the application requires random access to the large data, it must use the
smart large object functions. These functions give the application a greater
control over the smart-large-object data in terms of object properties,
concurrency access, and logging.

� Use smart-large-object automation.

The ODBC driver automatically uses the ODBC API for handling large
objects. The application can access smart large objects as standard ODBC
data types (SQL_LONGVARBINARY and SQL_LONGVARCHAR).

To enable smart-large-object automation use the “Report Standard ODBC
Types Only DSN” option under the DSN Advanced tab or set the
SQL_INFX_ATTR_LO_AUTOMATIC connection attribute.

Data structures for smart large objects
Table 3-10 describes the data structures used by the smart-large-object
functions.

Table 3-10 Smart large object data structures

Data structure Name Description

lofd file descriptor Defines the file descriptor to access
smart-large-object data.

loptr pointer structure Contains the security information and
pointer for a smart large object. This is the
data stored with the table columns.

lospec specification structure Contains the storage characteristics for a
smart large object.

lostat status structure Contains the status information for a smart
large object.
96 IBM Informix Developer’s Handbook

Client functions to access smart large objects
Table 3-11 lists the SQL functions that you can use in your ODBC program to
access the Informix smart large objects.

Table 3-11 Smart large object client functions

Function Description

ifx_lo_alter(loptr, lospec) Alters the storage attributes like Logging or
Last-access

ifx_lo_close(lofd) Closes a smart large object

ifx_lo_col_info(colname, lospec) Updates column-level storage characteristics

ifx_lo_create(lospec, flags, loptr, lofd) Creates and opens a new smart large object

ifx_lo_def_create_spec(lospec) Creates a smart-large-object specification
structure

ifx_lo_open(lofd, loptr, flags) Opens a smart large object

ifx_lo_read(lofd, buf) Reads data from a smart large object

ifx_lo_readwithseek(lofd, buf, offset,
whence)

Reads starting at a specific location

ifx_lo_seek(), ifx_lo_seek(lofd, offset,
whence, seek_pos)

Sets the file position for the next operation

ifx_lo_specget_estbytes(lospec,
estbytes)

Returns the estimated size

ifx_lo_specget_extsz(lospec, extsz) Returns the allocation extent size

ifx_lo_specget_flags(lospec, flags) Returns create-time flags

ifx_lo_specget_maxbytes(lospec,
maxbytes)

Returns the maximum number of bytes

ifx_lo_specget_sbspace(lospec,
sbspace)

Returns the sbspace name

ifx_lo_specset_estbytes(lospec,
estbytes)

Sets the estimated number of bytes

ifx_lo_specset_extsz(lospec, extsz) Sets the allocation extent size

ifx_lo_specset_flags(lospec, flags) Sets the create-time flags

ifx_lo_specset_maxbytes(lospec,
maxbytes)

Sets the maximum number of bytes
 Chapter 3. Working with the ODBC driver 97

Calling client functions from ODBC
An application must use the following standard ODBC syntax to call the
smart-large-object functions:

{? = call function_name (?, ?,...)}

The following example calls the ifx_lo_open() function:

{? = call ifx_lo_open(?, ?, ?)}

Creating a smart large object
To create a smart large object, you must create a BLOB descriptor and then
insert the BLOB into the database.

Use the following steps to create a new smart large object:

1. Allocate memory for the specification structure using lospec.

2. Create a lospec using ifx_lo_def_create_spec().

3. Initialize the specification structure using lospec.

4. Allocate memory for the pointer structure using loptr.

5. Create the object using ifx_lo_create().

ifx_lo_specset_sbspace(lospec,
sbspace)

Sets the sbspace name

ifx_lo_stat(lofd, lostat) Initializes a smart-large-object status structure

ifx_lo_stat_atime(lostat, atime) Returns the last-access time

ifx_lo_stat_cspec(lostat, lospec) Returns the specification structure

ifx_lo_stat_ctime(lostat, ctime) Returns the last-time change

ifx_lo_stat_refcnt(lostat, refcount) Returns the number of references

ifx_lo_stat_size(lostat, size) Returns the size

ifx_lo_tell(lofd, seek_pos) Returns the current file position

ifx_lo_truncate(lofd, offset) Truncates a smart large object at a given
position

ifx_lo_write(lofd, buf) Writes data

ifx_lo_writewithseek(lofd, buf, offset,
whence)

Writes data at a specific location

Function Description
98 IBM Informix Developer’s Handbook

6. Write the data into the object using ifx_lo_write().

7. Perform an SQL operation (INSERT, UPDATE, and so on).

8. Close the smart large object using ifx_lo_close().

Example 3-23 shows how to insert a BLOB into the database.

Example 3-23 Create_lo.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <fcntl.h>
#include <sys/stat.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000], connStrOut[1000], sqlstmt[100];
 SQLSMALLINT connStrOutLen;
 SQLINTEGER cnum = 101;
 SQLSMALLINT datatype, decimaldigits, nullable;
 SQLUINTEGER paramsize;
 SQLCHAR colname[25] = "catalog.advert_descr";
 SQLINTEGER colname_size = SQL_NTS;
 SQLCHAR* file_name = (SQLCHAR *) "create_lo.c";
 SQLCHAR* blob_data;
 SQLSMALLINT blob_size;
 SQLINTEGER blob_wsize, mode = LO_RDWR, cbMode = 0;
 int fd=0;
 struct stat statbuf;

/* BLOB file descriptor */
 SQLINTEGER lofd;
 SQLINTEGER lofd_valsize = 0;
/* BLOB pointer structure */
 SQLCHAR* loptr_buffer;
 SQLSMALLINT loptr_size;
 SQLINTEGER loptr_valsize = 0;
/* BLOB specification structure */
 SQLCHAR* lospec_buffer;
 Chapter 3. Working with the ODBC driver 99

 SQLSMALLINT lospec_size;
 SQLINTEGER lospec_valsize = 0;

 sprintf((char *) connStrIn, "DSN=demo_on");
 sprintf((char *) sqlstmt, "INSERT INTO catalog(catalog_num,advert_descr) VALUES
(0,?)");

 /* Read the file to insert in the BLOB */
 stat(file_name,&statbuf);
 blob_size = statbuf.st_size;
 blob_data = malloc (blob_size + 1);
 fd = _open (file_name, O_RDONLY);
 _read (fd, blob_data, blob_size);
 _close(fd);
 blob_data[blob_size] = '\0';
 blob_wsize = blob_size;

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, sizeof(connStrOut),
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

/* Obtain the size of the lospec and allocate memory */

 SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size, sizeof(lospec_size), NULL);
 lospec_buffer = malloc (lospec_size);

/* Call ifx_lo_def_create_spec() to create a lospec */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer, lospec_size,
&lospec_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_def_create_spec(?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Call ifx_lo_col_info() to initialise the lospec */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, sizeof(colname),
0, colname, sizeof(colname), &colname_size);
 lospec_valsize = lospec_size;
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer, lospec_size,
&lospec_valsize);
 rc=SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_col_info(?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Obtain the size of the smart loptr and allocate memory */
 SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size, sizeof(loptr_size), NULL);
 loptr_buffer = malloc (loptr_size);

/* Call ifx_lo_create() to create the BLOB */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_UDT_FIXED,
(UDWORD)lospec_size, 0, lospec_buffer, lospec_size, &lospec_valsize);
100 IBM Informix Developer’s Handbook

 rc=SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, (UDWORD)0,
0, &mode, sizeof(mode), &cbMode);
 loptr_valsize = loptr_size;

 SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer, loptr_size, &loptr_valsize);
 SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER, (UDWORD)0,
0, &lofd, sizeof(lofd), &lofd_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_create(?, ?, ?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Call ifx_lo_write to write the BLOB data */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, (UDWORD)0, 0,
&lofd, sizeof(lofd), &lofd_valsize);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
(UDWORD)blob_size, 0, blob_data, blob_size, &blob_wsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_write(?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 loptr_valsize = loptr_size;

/* Call SQLExecDirect to do the INSERT */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_UDT_FIXED,
(UDWORD)loptr_size, 0, loptr_buffer, loptr_size, &loptr_valsize);
 SQLExecDirect (hstmt, sqlstmt, SQL_NTS);

/* Call ifx_lo_close() to close the BLOB */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,
(UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_close(?)}", SQL_NTS);

 free (lospec_buffer);
 free (loptr_buffer);
 free (blob_data);

 SQLFreeStmt (hstmt, SQL_CLOSE);
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Accessing a smart large object
Reading a smart large object from the database involves the following steps:

1. Allocate memory for the smart-large-object pointer structure (loptr).

2. Perform the SELECT statement.

3. Bind the smart-large-object pointer structure variable with loptr retrieved
from the database.
 Chapter 3. Working with the ODBC driver 101

4. Call ifx_lo_open() to open the smart large object with the loptr fetched
from the database. This step opens the smart large object on the database.

5. Obtain the size of the smart large object status structure (lostat) and allocate
enough memory.

6. Call ifx_lo_stat() to obtain the BLOB status structure, so that we can
retrieve the estimated size of the BLOB in the next step.

7. Call ifx_lo_stat_size() to retrieve the size of the BLOB data and to allocate
enough memory.

8. Call ifx_lo_read() to retrieve the BLOB data.

9. Perform any operation with the BLOB data.

10.Call ifx_lo_close() to close the BLOB.

Example 3-24 shows a simple application that selects a CLOB column from the
database.

Example 3-24 The select_lo.c application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <fcntl.h>
#include <sys/stat.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBChdbc;
 SQLHENVhenv;
 SQLHSTMThstmt;
/* BLOB file descriptor */
 SQLLENlofd;
 SQLLENlofd_valsize = 0;
/* BLOB pointer structure */
 SQLCHAR*loptr_buffer;
 SQLSMALLINTloptr_size;
 SQLLENloptr_valsize = 0;
/* BLOB status structure */
 SQLCHAR*lostat_buffer;
 SQLSMALLINTlostat_size;
 SQLLENlostat_valsize = 0;
/* BLOB data */
102 IBM Informix Developer’s Handbook

 SQLCHAR*lo_data;
 SQLLENlo_data_valsize = 0;

 SQLRETURNrc = 0;
 SQLCHAR*dsn = "demo_on";
 SQLCHAR*selectStmt = (SQLCHAR *) "SELECT advert_descr FROM catalog where catalog_num
= 10075";

 SQLINTEGERmode = LO_RDONLY;
 SQLLENlo_size;
 SQLLENcbMode = 0, cbLoSize = 0;

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLConnect (hdbc, dsn, SQL_NTS, (SQLCHAR *) "", SQL_NTS, (SQLCHAR *) "", SQL_NTS);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

/* Get the size of the loptr */
 SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size, sizeof(loptr_size), NULL);
 loptr_buffer = malloc (loptr_size);

 SQLExecDirect (hstmt, selectStmt, SQL_NTS);

/* Bind the loptr with the resulset column */
 SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size, &loptr_valsize);
 SQLFetch (hstmt);
 SQLCloseCursor (hstmt);

/* Call ifx_lo_open() using the loptr fetched from the database */
 SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG, SQL_INTEGER, (UDWORD)0, 0,
&lofd, sizeof(lofd), &lofd_valsize);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_UDT_FIXED,
(UDWORD)loptr_size, 0, loptr_buffer, loptr_size, &loptr_valsize);
 SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, (UDWORD)0, 0,
&mode, sizeof(mode), &cbMode);
 SQLExecDirect (hstmt, (SQLCHAR *) "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Get the size of the lostat and allocate enough memory */
 SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size, sizeof(lostat_size), NULL);
 lostat_buffer = malloc(lostat_size);

/* Call ifx_lo_stat() to get the BLOB lostat */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, (UDWORD)0, 0,
&lofd, sizeof(lofd), &lofd_valsize);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer, lostat_size,
&lostat_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_stat(?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Call ifx_lo_stat_size to get the size of the BLOB data and allocate enough memory*/
 Chapter 3. Working with the ODBC driver 103

 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_UDT_FIXED,
(UDWORD)lostat_size, 0, lostat_buffer, lostat_size, &lostat_valsize);
 SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG, SQL_BIGINT, (UDWORD)0, 0,
&lo_size, sizeof(lo_size), &cbLoSize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 lo_data = malloc (lo_size + 1);

/* Call ifx_lo_read() to get the BLOB data */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, (UDWORD)0, 0,
&lofd, sizeof(lofd), &lofd_valsize);
 SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR, lo_size, 0,
lo_data, lo_size, &lo_data_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_read(?, ?)}", SQL_NTS);
 lo_data[lo_size] = '\0';
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* Call ifx_lo_close() to close the BLOB */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, (UDWORD)0, 0,
&lofd, sizeof(lofd), &lofd_valsize);
 SQLExecDirect (hstmt, (SQLCHAR *) "{call ifx_lo_close(?)}",SQL_NTS);

 fprintf(stdout,"%s",lo_data);

 free (loptr_buffer);
 free (lostat_buffer);
 free (lo_data);

 SQLFreeStmt (hstmt, SQL_CLOSE);
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Smart large object automation
Developing an application to handle smart large objects using the smart large
object automation method does not require any special attention. Use
SQL_LONGBINARY and SQL_LONGVARCHAR as data type.

Example 3-25 Illustrates how to insert a smart large object with the
SQL_INFX_ATTR_LO_AUTOMATIC enabled.

Example 3-25 Lo_auto.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
104 IBM Informix Developer’s Handbook

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <fcntl.h>
#include <sys/stat.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{

 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLCHAR* dsn="demo_on";
 SQLCHAR sqlstmt[128];
 SQLCHAR str[128];
 SQLLEN str_len = SQL_NTS;
 SQLSMALLINT BufferLength = 128;
 SQLINTEGER int_val;
 SQLRETURN rc = 0;

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLConnect (hdbc, dsn, SQL_NTS, (SQLCHAR *) "", SQL_NTS, (SQLCHAR *) "", SQL_NTS);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

/* Set SQL_INFX_ATTR_ODBC_TYPES_ONLY connection attribute to FALSE*/
 SQLSetConnectAttr(hdbc, SQL_INFX_ATTR_ODBC_TYPES_ONLY, (SQLPOINTER) SQL_FALSE,
SQL_IS_UINTEGER);

/* Set SQL_INFX_ATTR_LO_AUTOMATIC connection attribute to TRUE*/
 SQLSetConnectAttr(hdbc, SQL_INFX_ATTR_LO_AUTOMATIC, (SQLPOINTER) SQL_TRUE,
SQL_IS_UINTEGER);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

/* Preare the SQL statement */
 sprintf(sqlstmt, "INSERT INTO catalog(catalog_num,advert_descr) VALUES (0,?)");
 SQLPrepare (hstmt, sqlstmt, SQL_NTS);

/* Bind the input parameter and Execute the SQL */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_LONGVARCHAR,
BufferLength, 0, &str, 0, &str_len);
 SQLExecute (hstmt);

 SQLFreeStmt (hstmt, SQL_CLOSE);
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 Chapter 3. Working with the ODBC driver 105

 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Complex data types
Rows and Collections are composite values that consist of one or more
elements. You can use the execute SQL statements to access an entire row or
collection. However, you cannot access individual elements within a row or
collection.

To access composite values from the ODBC driver you must use the Client
functions for Rows and Collections.

Client functions for Rows and Collections
The ODBC functions for handling Rows and Collections start with the prefix
ifx_rc_. Table 3-12 lists the available functions.

Table 3-12 Row and Collection Client functions

Function Description

ifx_rc_count() Returns the number of elements or fields that are in a row or
collection

ifx_rc_create() Creates a buffer for a row or collection

ifx_rc_delete() Deletes an element from a collection

ifx_rc_describe() Returns information about the complex data type or and individual
element

ifx_rc_fetch() Returns the value of an element that is in a row or collection

ifx_rc_free() Frees a row or collection handle

ifx_rc_insert() Inserts a new element into a collection

ifx_rc_isnull() Evaluate if a complex type is NULL or not

ifx_rc_setnull() Set a complex type to NULL

ifx_rc_typespec() Returns the type specification for a row or collection

ifx_rc_update() Updates the value for an element that is in a row or collection
106 IBM Informix Developer’s Handbook

Creating a complex data type
Example 3-26 shows how to perform an INSERT operation using the Informix
ODBC functions ifx_rc_xxx. We use a simple table customer_rc defined as
follows:

CREATE ROW TYPE name_t (
fname VARCHAR(15),
lname VARCHAR(15)

);

CREATE TABLE customer_rc (
customer_num SERIAL,
customer_name name_t,
contact_dates LIST(DATETIME YEAR TO DAY NOT NULL)

);

Example 3-26 Create_rc.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <fcntl.h>
#include <sys/stat.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBChdbc;
 SQLHENVhenv;
 SQLHSTMThstmt;

/* Row variables */
 HINFX_RChrow;
 HINFX_RChlist;

 SQLCHAR*dsn = "demo_on";
 SQLRETURNrc = 0;
 SQLINTEGERi, in;
 SQLLENdata_size = SQL_NTS;
 SQLSMALLINTposition = SQL_INFX_RC_ABSOLUTE;
 SQLSMALLINTjump;
 SQLCHARrow_data[2][15] = {"Ludwig", "Pauli"};
 SQLLENrow_data_size = SQL_NTS;
 SQLCHARlist_data[2][25] = {"2008-08-16","2008-08-16"};
 SQLLENlist_data_size = SQL_NTS;
 Chapter 3. Working with the ODBC driver 107

 SQLCHAR*insertStmt = (SQLCHAR *) "INSERT INTO customer_rc VALUES (0, ?, ?)";
 SQLLENcbHrow = 0, cbHlist = 0, cbPosition = 0, cbJump = 0;

/* Connection */
 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLConnect (hdbc, dsn, SQL_NTS, (SQLCHAR *) "", SQL_NTS, (SQLCHAR *) "", SQL_NTS);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

/* Call ifx_rc_create() to allocate a row handle */
 SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY, SQL_INFX_RC_ROW,
sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC), &cbHrow);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 0, 0, (SQLCHAR *)
"ROW(fname VARCHAR(15), lname VARCHAR(15))", 0, &data_size);
 SQLExecDirect (hstmt, (SQLCHAR *) "{? = call ifx_rc_create(?)}", SQL_NTS);

/* Call ifx_rc_create() to allocate a list handle */
 SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY, SQL_INFX_RC_LIST,
sizeof(HINFX_RC), 0, &hlist, sizeof(HINFX_RC), &cbHlist);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 0, 0, (SQLCHAR *)
"LIST (DATETIME YEAR TO DAY NOT NULL)", 0, &data_size);
 SQLExecDirect (hstmt, (SQLCHAR *) "{? = call ifx_rc_create(?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

/* call ifx_rc_update() to insert elements into the row */
for (i=0; i<2; i++)
{

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_ROW,
sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC), &cbHrow);

SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 25, 0,
row_data[i], 0, &row_data_size);

SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0, 0,
&position, 0, &cbPosition);

jump = i + 1;
SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0, 0,

&jump, 0, &cbJump);
SQLExecDirect (hstmt, (SQLCHAR *)"{call ifx_rc_update(?, ?, ?, ?)}", SQL_NTS);

}

/* Call ifx_rc_insert() to insert elements into the list */
for (i=0; i<2; i++)
{

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_LIST,
sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC), &cbHlist);

SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,SQL_DATE, 25, 0,
list_data[i], 0, &list_data_size);

SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0, 0,
&position, 0, &cbPosition);

jump = i + 1;
SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0, 0,

&jump, 0, &cbJump);
SQLExecDirect (hstmt, (SQLCHAR *)"{call ifx_rc_insert(?, ?, ?, ?)}", SQL_NTS);

}

108 IBM Informix Developer’s Handbook

 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_COLLECTION,
sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC), &cbHrow);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_COLLECTION,
sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC), &cbHlist);
 SQLExecDirect (hstmt, insertStmt, SQL_NTS);

 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_ROW,
sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC), &cbHrow);
 SQLExecDirect(hstmt, (SQLCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

/* Free the list handle */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_LIST,
sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC), &cbHlist);
 SQLExecDirect(hstmt, (SQLCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

 SQLFreeStmt (hstmt, SQL_CLOSE);
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);
 return (rc);
}

Example 3-27 shows the information inserted into the customer_rc table after the
execution of the example.

Example 3-27 The customer_rc table

> select * from customer_rc
> ;

customer_num 1
customer_name ROW('Ludwig','Pauli')
contact_dates LIST{'2008-08-16','2008-08-16'}

1 row(s) retrieved.

>

 Chapter 3. Working with the ODBC driver 109

Accessing a complex data type
Example 3-28 demonstrates how to select a Row type with the ODBC driver.

Example 3-28 The select_row.c application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#include <fcntl.h>
#include <sys/stat.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt, hstmt_row;

 HINFX_RC hrow;
 SQLCHAR *dsn="demo_on";
 SQLRETURN rc = 0;
 SQLINTEGER i;
 SQLSMALLINT position = SQL_INFX_RC_ABSOLUTE, jump = 0;
 SQLLEN cbHrow = 0, cbPosition = 0, cbJump = 0, cbRCData = 0;
 SQLLEN data_size = SQL_NTS, cbrow = 0;
 SQLCHAR* sqlstmt = (SQLCHAR *) "SELECT customer_name FROM customer_rc WHERE
customer_num = 1";
 SQLCHAR row_data[200];

/* Connection */
 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLConnect (hdbc, dsn, SQL_NTS, (SQLCHAR *) "", SQL_NTS, (SQLCHAR *) "", SQL_NTS);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt_row);

/* Call ifx_rc_create() to allocate a row handle */
 SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY, SQL_INFX_RC_ROW,
sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC), &cbHrow);
 SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 0, 0, (SQLCHAR *)
"row", 0, &data_size);
 SQLExecDirect (hstmt, (SQLCHAR *) "{? = call ifx_rc_create(?)}", SQL_NTS);
 SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
110 IBM Informix Developer’s Handbook

/* Bind the row handle with the resulset column */
 SQLExecDirect (hstmt, sqlstmt, SQL_NTS);
 SQLBindCol (hstmt, 1, SQL_C_BINARY, (SQLPOINTER) hrow, sizeof(HINFX_RC), &cbHrow);
 SQLFetch (hstmt);

/* Get the row data */
 fprintf(stdout, "Row data:\n");
 for (i=0; i<2; i++)
 {

strcpy((char *) row_data, "<null>");

SQLBindParameter (hstmt_row, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR, 0, 0,
row_data, 200, &cbRCData);

SQLBindParameter (hstmt_row, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC), &cbHrow);

SQLBindParameter (hstmt_row, 3, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0,
0, &position, 0, &cbPosition);

jump = i + 1;
SQLBindParameter (hstmt_row, 4, SQL_PARAM_INPUT, SQL_C_SHORT, SQL_SMALLINT, 0, 0,

&jump, 0, &cbJump);

/* Call ifx_rc_fetch() to fetch individual elements from the row */
 SQLExecDirect (hstmt_row, (SQLCHAR *) "{ ? = call ifx_rc_fetch(?, ?, ?) }",

SQL_NTS);
SQLFreeStmt (hstmt_row, SQL_RESET_PARAMS);

fprintf(stdout, "\t\t%s\n", row_data);
 }

/* Call ifx_rc_free() to free the row handle */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_INFX_RC_ROW,
sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC), &cbrow);
 SQLExecDirect(hstmt, (SQLCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

 SQLFreeStmt (hstmt, SQL_CLOSE);
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-29 shows the output of Example 3-28 on page 110.

Example 3-29 Output of select_row.c

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -ID:\infx\csdk350tc7\incl\cli
odbc32.lib /nologo select_row.c
select_row.c

C:\work>select_row
Row data:
 Chapter 3. Working with the ODBC driver 111

 Ludwig
 Pauli

C:\work>

3.3.5 Error handling

In this section, we show how to obtain additional information when an ODBC
function fails.

Error handling sample
When an ODBC function fails, it stores information in the diagnostic record. This
record contains information such as error messages, warning, and status
information about the success or failure of the ODBC call.

An ODBC application can retrieve the diagnostic record or individual fields using
the SQLGetDiagRec() and SQLGetDiagField() ODBC functions.

Example 3-30 shows a typical usage of SQLGetDiagRec().

Example 3-30 A sample connect_error.c application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;
 UCHAR SqlState[200] = "", ErrorMsg[200] = "";
 SQLINTEGER IsamError = 0;
 SDWORD NativeError = 0L;
 SWORD ErrorMsgp = 0;
 SQLSMALLINT recnum = 1;

 if (argc != 2)
112 IBM Informix Developer’s Handbook

 {
 fprintf (stdout, "Please specify the name of a DSN!\n");
 return(1);
 }
 else

{
if (strstr (argv[1],"DRIVER")==NULL)
 sprintf((char *) connStrIn, "DSN=%s;", (char *)argv[1]);
else
 sprintf((char *) connStrIn, "%s;", (char *)argv[1]);
}

 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 rc = SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, 1000,
&connStrOutLen, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS)
 {
 SQLGetDiagRec(SQL_HANDLE_DBC, hdbc, recnum, SqlState, &NativeError, ErrorMsg,
199, &ErrorMsgp);
 fprintf(stdout, "SqlState = %s\n Native Error = %d\n Error Message = %s\n",
SqlState, NativeError, ErrorMsg);
 fprintf (stdout, "Connection failed!\n");
 return (1);
 }

 fprintf (stdout, "Connection Successful\n");
 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Example 3-31 shows the output of Example 3-30 on page 112. In addition to the
ODBC SQLSTATE error, it returns the Informix native error and the description
for the error.

Example 3-31 Output of the connect_error.c application

C:\work>cl /DWIN32 /D_CRT_SECURE_NO_DEPRECATE -I%INFORMIXDIR%\incl\cli
odbc32.lib /nologo connect_error.c
connect_error.c

C:\work>connect_error wrongDNS
SqlState = IM002
 Native Error = 0
 Error Message = [Microsoft][ODBC Driver Manager] Data source name not found
and no default driver specified
Connection failed!
 Chapter 3. Working with the ODBC driver 113

C:\work>connect_error demo_on;UID=wronguser
SqlState = 28000
 Native Error = -951
 Error Message = [Informix][Informix ODBC Driver][Informix]Incorrect password
or user wronguser@localhost is not known on the database server.
Connection failed!

C:\work>

Because this function is called quite often, it make sense to have a function to
display the error message. Example 3-32 illustrates a typical error handling
function.

Example 3-32 A sample simple_select_werr.c application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif

#include "infxcli.h"

void CheckDiag (SQLSMALLINT handle_type, SQLHANDLE handle, char *text)
{
 RETCODErc = SQL_SUCCESS;
 UCHARSqlState[200] = "", ErrorMsg[200] = "";
 SQLINTEGERIsamError = 0;
 SDWORDNativeError = 0L;
 SWORDErrorMsgp = 0;
 SQLSMALLINTrecnum = 1;

 fprintf (stdout,"Error in %s \n",text);
 while (rc != SQL_NO_DATA_FOUND) {
 rc = SQLGetDiagRec(handle_type, handle, recnum, SqlState, &NativeError,
ErrorMsg, 199, &ErrorMsgp);
 if (rc != SQL_NO_DATA_FOUND) {
 SQLGetDiagField(handle_type, handle, recnum, SQL_DIAG_ISAM_ERROR,
&IsamError, SQL_IS_INTEGER, NULL);
 fprintf (stdout," SqlState = %s\n Native Error = %d\n Error Message = %s\n
ISAM Error = %d\n", SqlState, NativeError, ErrorMsg, IsamError);
 }
 recnum++;
 }
}
int main (long argc, char* argv[])
{
 SQLHDBC hdbc;
114 IBM Informix Developer’s Handbook

 SQLHENV henv;
 SQLHSTMT hstmt;

 SQLRETURN rc = 0;
 SQLCHAR connStrIn[1000];
 SQLCHAR connStrOut[1000];
 SQLSMALLINT connStrOutLen;

 int sqllen;
 SQLCHAR *sqlstmt;

 if (argc != 3)
 {
 fprintf (stdout, "Please specify the name of a DSN and the SQL Statement to
run!\n");
 return(1);
 }
 else

{
if (strstr (argv[1],"DRIVER")==NULL)
 sprintf((char *) connStrIn, "DSN=%s;", (char *)argv[1]);
else
 sprintf((char *) connStrIn, "%s;", (char *)argv[1]);

 sqllen = strlen((char *)argv[2]);
 sqlstmt = (SQLCHAR *) malloc (sqllen + sizeof(char));
 strcpy((char *)sqlstmt, (char *)argv[2]);

}

 SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 SQLDriverConnect (hdbc, NULL, connStrIn, SQL_NTS, connStrOut, 1000, &connStrOutLen,
SQL_DRIVER_NOPROMPT);
 fprintf (stdout, "Connected\n");
 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

 rc = SQLExecDirect (hstmt, sqlstmt, SQL_NTS);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {

CheckDiag(SQL_HANDLE_STMT, hstmt,"SQLExecDirect()");
 fprintf (stdout, "SQLExecDirectW() failed!\n");
 return (1);
 }
 fprintf (stdout, "Executed SQL Statement:\n%s\n",sqlstmt);

 SQLDisconnect (hdbc);
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

 Chapter 3. Working with the ODBC driver 115

We create a function called CheckDiag() to retrieve the diagnostic information:

void CheckDiag (SQLSMALLINT handle_type, SQLHANDLE handle, char *text)

Example 3-33 shows the output of the previous sample.

Example 3-33 Output of the simple_select_werr.c application

C:\work>simple_sql_werror demo_on "wrong sql"
Connected
Error in SQLExecDirect()
 SqlState = 42000
 Native Error = -201
 Error Message = [Informix][Informix ODBC Driver][Informix]A syntax error has
occurred.
 ISAM Error = 0
SQLExecDirectW() failed!

C:\work>simple_sql_werror demo_on "DELETE from wrongtable"
Connected
Error in SQLExecDirect()
 SqlState = 42S02
 Native Error = -206
 Error Message = [Informix][Informix ODBC Driver][Informix]The specified table
(wrongtable) is not in the database.
 ISAM Error = -111
SQLExecDirectW() failed!

C:\work>

ODBC SQLSTATE errors with Informix ODBC Driver
The error that is returned by the ODBC function is based on the X/Open standard
SQLSTATE errors. For the SQLSTATE codes, refer to the Informix ODBC Driver
Guide at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/si
i091033222.htm#sii091033222

Note: If an error is generated by the database server, the error message
contains the string [Informix] before the description of the error. For
example:

Error in SQLExecDirect()
SqlState = 42S02
 Native Error = -206
 Error Message = [Informix][Informix ODBC Driver][Informix]The specified
table (test) is not in the database.
 ISAM Error = -111
SQLExecDirectW() failed!
116 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/sii091033222.htm#sii091033222
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.odbc.doc/sii091033222.htm#sii091033222

3.3.6 Troubleshooting

In this section, we discuss typical problems when using the Informix ODBC
drivers and available traces.

Environment
Make sure the setup of Informix Client is correct. If your application fails to load
the ODBC driver, verify that the Informix Client or Data Server Client libraries are
accessible to the application.

� The environment variable PATH should contain the bin directory of your Client
package.

� The shared library PATH variable on a UNIX system should contain the
directory where the shared libraries are located.

� Make sure that the INFORMIXDIR variable is set correctly (as an environment
variable or stored in the registry using the setnet32.exe utility).

� Any 32-bit applications require 32-bit drivers to work. Make sure that the
drivers that you have installed are of the same type as your application.

If your application fails to connect, make sure the connection details are valid.

Client SDK on Windows contains a simple connection tool called iLogin, which
you can use to check whether you have connection with the database server. If
iLogin fails to connect, all the other drivers will fail also.

� Check that the values stored in the registry with the setnet32.exe utility are
valid.

� If you use 32-bit and 64-bit drivers on the same system, remember that on a
Windows system, there are two registry hives to store the connectivity
information. Make sure that both are correct.

Tracing
When developing an application using the ODBC driver, most problems are
caused by passing incorrect parameters to the ODBC functions.

ODBC Trace
You can generate a trace file of all the calls to the ODBC driver using the ODBC
Trace facility. On a Windows system, you can enable ODBC Trace using the
ODBC Data Source Administrator.
 Chapter 3. Working with the ODBC driver 117

Figure 3-14 shows the Tracing tab.

Figure 3-14 Enabling trace

Example 3-34 shows some of the entries in an ODBC trace file.

Example 3-34 ODBC trace

...
rccreate 99c-db8 EXIT SQLBindParameter with return code 0
(SQL_SUCCESS)
 HSTMT 01D51DC0
 UWORD 2
 SWORD 1 <SQL_PARAM_INPUT>
 SWORD 1 <SQL_C_CHAR>
 SWORD 1 <SQL_CHAR>
 SQLULEN 25
 SWORD 0
 PTR 0x002CFEC8
 SQLLEN 0
 SQLLEN * 0x002CFF50 (-3)

rccreate 99c-db8 ENTER SQLBindParameter
 HSTMT 01D51DC0
 UWORD 3
 SWORD 1 <SQL_PARAM_INPUT>
 SWORD 5 <SQL_C_SHORT>

Note: Remember to select Machine-Wide tracing for all user identities if
your application runs as a service or with a different user.
118 IBM Informix Developer’s Handbook

 SWORD 5 <SQL_SMALLINT>
 SQLULEN 0
 SWORD 0
 PTR 0x002CFF68
 SQLLEN 0
 SQLLEN * 0x002CFF54
...

On a UNIX system, ODBC trace is active if the Trace parameter in the [ODBC]
section of the odbc.ini configuration file is set to 1.

Example 3-35 shows the Trace settings for the odbc.ini file.

Example 3-35 Trace in the odbc.ini file

;
; Trace file Section
;
Trace=1
TraceFile=/tmp/odbctrace.out
InstallDir=/opt/IBM/informix
TRACEDLL=idmrs09a.so

SQLIDEBUG
All the Informix clients use the SQLI protocol to communicate with the database
server.

In addition to the ODBC trace, you can generate an SQLIDEBUG trace that
contains all the message between the client application and the database server.

You can enable SQLIDEBUG trace at the Informix Client side by defining the
environment variable as follows:

SQLIDEBUG=2:path_to_trace_files

Alternatively, you can enable trace at the server side by running the following
command:

onmode -p 1 sqli_dbg

Note: On a Windows system, when using the server side tracing, the
SQLIDEBUG files are created in the C:\temp\sqli directory. This directory
must exist before you can enable the trace.

On a UNIX system, the trace files are created in the /tmp/sqli directory.
 Chapter 3. Working with the ODBC driver 119

Example 3-36 demonstrates how to set SQLIDEBUG trace on the client.

Example 3-36 SQLIDEBUG sample

C:\work>set SQLIDEBUG=2:sqli_trace

C:\work>simple_sql_werror demo_on "wrong_sql"
Connected
Error in SQLExecDirect()
 SqlState = 42000
 Native Error = -201
 Error Message = [Informix][Informix ODBC Driver][Informix]A syntax error has
occurred.
 ISAM Error = 0
SQLExecDirectW() failed!

C:\work>dir sqli_trace_2940_1016_1f428b8
 Volume in drive C is W2003
 Volume Serial Number is 50DA-70D7

 Directory of C:\work

22/06/2010 18:39 348 sqli_trace_2940_1016_1f428b8
 1 File(s) 348 bytes
 0 Dir(s) 76,628,099,072 bytes free

C:\work>

The SQLIDEBUG trace files contains the SQLI packages between the server and
the client. To obtain an readable output, you must run the sqliprt tool.

Example 3-37 demonstrates how to run sqliprt.

Example 3-37 The sqliprt output

C:\work>sqliprt -o trace.txt sqli_trace_2940_1016_1f428b8

C:\work>type trace.txt
SQLIDBG Version 1

C->S (4) Time: 2010-06-22 18:39:05.43700
 SQ_INTERNALVER
 Internal Version Number: 316

C->S (14) Time: 2010-06-22 18:39:05.43700
 SQ_PROTOCOLS
 SQ_EOT

S->C (14) Time: 2010-06-22 18:39:05.43700
 SQ_PROTOCOLS
120 IBM Informix Developer’s Handbook

 SQ_EOT

C->S (90) Time: 2010-06-22 18:39:05.43700
 SQ_INFO
 INFO_ENV
 Name Length = 12
 Value Length = 34
 "DBTEMP"="C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp"
 "SUBQCACHESZ"="10"
 "OPTOFC"="0"
 INFO_DONE
 SQ_EOT

S->C (2) Time: 2010-06-22 18:39:05.43700
 SQ_EOT

C->S (4) Time: 2010-06-22 18:39:05.43700
 SQ_BEGIN
 SQ_EOT

S->C (10) Time: 2010-06-22 18:39:05.43700
 SQ_XACTSTAT
 SQ_EOT

C->S (4) Time: 2010-06-22 18:39:05.43700
 SQ_CMMTWORK
 SQ_EOT

S->C (10) Time: 2010-06-22 18:39:05.43700
 SQ_XACTSTAT
 SQ_EOT

C->S (22) Time: 2010-06-22 18:39:05.43700
 SQ_PREPARE
 # values: 0
 CMD.....: "wrong_sql" [9]
 SQ_NDESCRIBE
 SQ_WANTDONE
 SQ_EOT

S->C (12) Time: 2010-06-22 18:39:05.43700
 SQ_ERR
 SQL error..........: -201
 ISAM/RSAM error....: 0
 Offset in statement: 1
 Error message......: "" [0]
 SQ_EOT

C:\work>

Note: On a UNIX system, the equivalent of the sqliprt tool is sqliprint.
 Chapter 3. Working with the ODBC driver 121

DRDADEBUG
All IBM Data Server drivers use the DRDA protocol to communicate with the
database server.

Similar to SQLIDEBUG, you can enable DRDADEBUG trace at the server side
by running the following onmode command:

onmode -p 1 drda_dbg

The DRDA trace files are created in the /tmp/drda directory for a UNIX system
and the C:\temp\drda directory for a Windows system. You need to use the
drdaprint tool to convert the trace files to a readable format.

Example 3-38 shows the use of drdaprint.

Example 3-38 Using the drdaprint tool

C:\temp\drda>dir
 Volume in drive C is W2003
 Volume Serial Number is 50DA-70D7

 Directory of C:\temp\drda

22/06/2010 18:50 <DIR> .
22/06/2010 18:50 <DIR> ..
22/06/2010 18:50 2,269 drda.47
 1 File(s) 2,269 bytes
 2 Dir(s) 76,628,135,936 bytes free

C:\temp\drda>drdaprint
Usage: drdaprint [-f] [-o outfile] inpfile
 -f: format hex dump

C:\temp\drda>drdaprint -o trace.txt drda.47

C:\temp\drda>

Example 3-39 shows a section of the DRDA trace file.

Example 3-39 DRDATrace file

C:\temp\drda>type trace.txt
DRDADBG Version 1

1 data IDS DRDA Communication Manager
 function sqljcIntReceive()
 bytes 270
 time 2010-06-22 18:50:13.31200

 RECEIVE BUFFER(AS):
122 IBM Informix Developer’s Handbook

 EXCSAT RQSDSS (ASCII) (EBCDIC)
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF
 0000 00C3D041000100BD 10410080115EA289 ...A.....A...^.. .C}..........;si
 0010 949793856DA29893 6DA685999996994B m...m......K mple_sql_werror.
 0020 85A7F0F6F1F4F0C4 F9F4F0F0F0000000 ex06140D94000...
 0030 0000000000000000 0000000000000000
 0040 0000000000000000 000000000060F0F0 `.. -00
 0050 F0F1C1C4D4C9D5C9 E2E3D9C1E3D6D940 @ 01ADMINISTRATOR
 0060 4040404040404040 4040404040404040 @@@@@@@@@@@@@@@@
 0070 E2E3D6D9C5E26DC4 F0C4C2F240404040 m.....@@@@ STORES_D0DB2
 0080 4040404040404040 40F0001814041403 @@@@@@@@@....... 0......
 0090 000A2407000A1474 0005240F00081440 ..$....t..$....@
 00A0 0009000B1147D8C4 C2F261D5E3000A11 G....a..... QDB2/NT...
 00B0 6DC4E4C2C9E3D600 0C115AE2D8D3F0F9 m.........Z..... _DUBITO...]SQL09
 00C0 F0F7F0 ... 070
 Chapter 3. Working with the ODBC driver 123

124 IBM Informix Developer’s Handbook

Chapter 4. Working with ESQL/C

This chapter discusses ESQL/C, an SQL application programming interface
(API) that enables you to embed Structured Query Language (SQL) statements
directly into a C program. ESQL/C is bundled with the Informix Client Software
Development Kit (Client SDK). The ESQL/C preprocessor, esql, converts each
SQL statement and all IBM Informix-specific code to C-language source code
and invokes the C compiler to compile it.

The advantage of using ESQL/C is that it supports all the data types as well as
extended data types of Informix and is optimized for an IBM Informix database. If
you are using only Informix as your database server, then using ESQL/C might
be your best choice.

In this chapter, we discuss the basic elements of an Informix ESQL/C application
and show how to perform database operations within an ESQL/C program. We
end the chapter by looking at various methods in handling exceptions and
troubleshooting.

This chapter includes the following topics:

� Informix ESQL/C
� Setup and configuration
� Windows system configuration
� Developing an ESQL/C application

4

© Copyright IBM Corp. 2010. All rights reserved. 125

4.1 Informix ESQL/C

Informix ESQL/C includes the following software components:

� The Informix ESQL/C libraries of C functions, which provide access to the
database server

� The Informix ESQL/C header files, which provide definitions for the data
structures, constants, and macros that are useful to the Informix ESQL/C
program

� The esql command, which processes the Informix ESQL/C source code to
create a C source file that it then passes to the C compiler

� The finderr utility on the UNIX system and the Informix Error Messages
Windows-based Informix error messages utility that enable you to obtain
information about IBM Informix-specific error messages

On Windows platforms, Informix provides the following additional utilities:

� The setnet32.exe utility, which is a Windows-based utility that enables you to
set configuration information

� The iLogin utility, which is a demonstration program that displays a dialog box
with fields for the connection parameters and for testing a connection to the
database server (uses the stores7 database)

Figure 4-1 gives an overview of the relationship between ESQL/C and the native
C and illustrates the process of the transfer of control.

Figure 4-1 Relationship between Informix ESQL/C and C

When you have created an Informix ESQL/C program file, you run the esql
command on that file. By default, the Informix ESQL/C preprocessor runs first
and translates the embedded SQL statements in the program into Informix
ESQL/C function calls that communicate with the database server. The Informix
ESQL/C preprocessor produces a C source file and calls the C compiler. The C
compiler then compiles your source file and links any other C source file, object
file, or library file the same way as any other C program.
126 IBM Informix Developer’s Handbook

If the esql command does not encounter errors in one of these steps, it
generates an executable file. You can run the compiled Informix ESQL/C
program as you would run any C program. When the program runs, it calls the
Informix ESQL/C library procedures. The library procedures set up
communications with the database server to carry out the SQL operations.

4.2 Setup and configuration

Informix ESQL/C is installed, by default, as a part of Client SDK. The release
notes for Client SDK contain the information about supported versions of the IBM
Informix database server. Make sure that you install the version of Client SDK
that is supported by the database with which you are working.

4.3 Windows system configuration

On a Windows system, the default Client SDK installation directory is C:\Program
Files\IBM\Informix\Client-SDK. Make sure that the INFORMIXDIR
environment variable is pointing to the directory where the product was installed.
The PATH environment variable needs to contain the following directories:

� The path to the bin directory that is under the installation directory needs to
be defined (that is, the PATH variable needs the $INFORMIXDIR/bin directory
defined).

� The path where native C compiler is located. Informix Client products are
certified with the Microsoft Visual C++ 2005 SP1.

UNIX configuration
On UNIX platforms, the default installation directory for Client SDK is
/opt/IBM/informix. The INFORMIXDIR environment variable needs to point to
the directory where the product was installed. Add the following directories to the
PATH environment variable:

� The bin directory under the installation directory, $INFORMIXDIR/bin
� The path to the native C compiler

The sqlhosts file contains the information that is required to connect to an IBM
Informix database server. You must set this file to include an entry for your
Informix database server name, ESQL/C required protocol, host name, and port
number. By default, the sqlhosts file is under the $INFORMIXDIR/etc/ directory.
You can use the INFORMIXSQLHOSTS environment variable to point to a
different location.
 Chapter 4. Working with ESQL/C 127

Example 4-1 shows a simple sqlhosts file.

Example 4-1 The sqlhosts file

#server protocol hostname service/port
demo_on onsoctcp kodiak 9088

For more information about the sqlhosts file, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/i
ds_admin_0158.htm

4.4 Developing an ESQL/C application

In this section, we describe how to connect to a database, how to perform basic
database operations such as delete and insert, and how to update using
ESQL/C. We also describe the handling of extended data types by ESQL/C.

We use the sample instance and database that Informix Server provides to
demonstrate ESQL/C application development. The sample instance, demo_on, is
created when the Informix server is installed. On a Windows operating system,
the sample instance is ol_svr_custom. You can create a sample database,
stores_demo, under the demo_on instance and populate that sample database
with tables and data by running the dbaccessdemo utility that resides in the
$INFORMIXDIR/bin/ directory.

4.4.1 Creating an ESQL/C application

To build an Informix ESQL/C application:

1. Develop a C program with the embedded Informix SQL statements, and name
the program with a .ec or .ecp extension. The SQL statements are qualified
with an EXEC SQL keyword or the dollar sign ($) symbol as shown in the
following example:

EXEC SQL include sqlca;
EXEC SQL SELECT fname into :c1 FROM customer WHERE customer_num=:i1
$SET ISOLATION DIRTY READ;

2. Preprocess the Informix ESQL/C source file with the esql command. The
esql command also invokes the C compiler to compile the program into object
code.

As necessary, correct errors that are reported by the preprocessor and the
compiler and then repeat this step.
128 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0158.htm

3. Link the object code into one or more executable files using the esql
command. The executable files have a .exe extension.

4. Run the application.

You run the compiled Informix ESQL/C program as you would any C program.
When the program runs, it calls the Informix ESQL/C library procedures. The
library procedures set up communications with the database server to carry
out the SQL operations.

Example 4-2 shows a simple program, customer.ec, that connects to the
database and retrieves data. All the SQL-related statements are embedded in
the C program with the EXEC SQL keyword.

Example 4-2 Simple ESQL/C program

#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqltypes;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
int i1=101;
char c1[50];
char c2[50];
EXEC SQL END DECLARE SECTION;
int i2;

EXEC SQL connect to 'stores_demo';

EXEC SQL select fname,lname into :c1, :c2 from customer where
customer_num=:i1
;
if (SQLCODE == 100)
 {
 printf("SQLCODE=%d\n",SQLCODE);
 printf("Data not found\n");
 }
else
 {
 printf("SQLCODE=%d\n",SQLCODE);
 printf("Data found \n");
 printf("Last Name \t%s\n",c1);
 printf("First Name \t%s\n",c2);
 }
}

 Chapter 4. Working with ESQL/C 129

Compiling ESQL/C programs
The esql command translates Informix ESQL/C code to C code and then calls
the C compiler to compile and link the C code.

The C compiler takes the following actions:

1. Compiles the C language statements to object code.

2. Links to Informix ESQL/C libraries and to any other files or libraries that you
specify.

3. Creates an executable file.

The general syntax for an esql command to compile is as follows:

esql <options> <source.ec> <options> <outfile>

By default, the esql command creates an executable called a.out in the current
directory. You can explicitly specify the name of the executable file with the -o
option. For example, the following command compiles the customer.ec
executable file shown in Example 4-2 on page 129 and produces the executable
file customer.exe:

esql -o customer.ec customer.exe

If you run the esql command on a Windows operating system, the name of the
target file defaults to the name of the first Informix ESQL/C source file on the
esql command line. The extension is changed to either .exe or .dll, depending
on the type of target that is generated.

You can use a compiler other than the native C compiler by setting the
INFORMIXC environment variable. Table 4-1 lists the native C compilers on
various platforms.

Table 4-1 Native C compiler

If you want to pass C compiler options that have the same names as Informix
ESQL/C processor options, precede them with the -cc option. For example, the

Platforms Native compiler

Solaris CC

HP aC++

Windows VC++ / VS2008/ VS2005

AIX xlc

Open source gcc/g++
130 IBM Informix Developer’s Handbook

following esql command passes the -od and -g options to the C compiler but
uses the -db2 option itself:

esql -cc -od -g demo1.ec -db2

Shared libraries
IBM Informix products use the Informix general libraries for interactions between
the client SQL API products (IBM Informix ESQL/C and IBM Informix
ESQL/COBOL) and the database server. You can choose between the following
types of Informix general libraries to link with your Informix ESQL/C application:

� Static Informix general libraries

To link a static library, the linker copies the library functions to the executable
file of your Informix ESQL/C program. The static Informix general libraries
allow an Informix ESQL/C program on computers that do not support shared
memory to access the Informix general library functions.

To link static libraries use the -static option, for example:

esql -static file.ec -o file.exe

� Shared Informix general libraries

To link a shared library, the linker copies information about the location of the
library to the executable file of your Informix ESQL/C program. The shared
Informix libraries allow several applications to share a single copy of these
libraries, which the operating system loads just once into shared memory.

� Thread-safe versions of static and shared Informix general libraries

The thread-safe versions of Informix general libraries allow an Informix
ESQL/C application that has several threads to call these library functions
simultaneously. The thread-safe versions of Informix libraries are available as
both static libraries and shared libraries.

There are some platform specific considerations when you link shared Informix
general libraries to an ESQL/C module. The environment variable that specifies
the search path at run time is different depending on the platform, as listed in
Table 4-2.

Table 4-2 Environment variable for shared libraries

Platform Environment variable

AIX LIBPATH

Solaris LD_LIBRARY_PATH

HP-UX SHLIB_PATH

Mac OS X DYLD_LIBRARY_PATH
 Chapter 4. Working with ESQL/C 131

Set the $INFORMIXDIR/lib directory and any of its subdirectories to specify the
shared-library path. For example, on Linux, set the LD_LIBRARY_PATH
environment variable as follows:

� Bourne shell

LD_LIBRARY_PATH=$INFORMIXDIR/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

� C shell

setenv LD_LIBRARY_PATH $INFORMIXDIR/lib:$LD_LIBRARY_PATH

On a Windows system, use the following command:

set LIB = %INFORMIXDIR%\lib\;%LIB%

To link shared Informix general libraries with an Informix ESQL/C module, you do
not need to specify a command-line option. Informix ESQL/C links shared
libraries by default. The following command compiles the file.ec source file with
shared Informix libraries:

esql myfile.ec -o myfile.exe

Choosing between shared and static library versions
Shared libraries are most useful in multiuser environments where only one copy
of the library is required for all applications. Shared libraries bring the following
benefits to your Informix ESQL/C application:

� Shared libraries reduce the size of executable files because these library
functions are linked dynamically on an as-needed basis.

� At run time, a single copy of a shared library can be linked to several
programs, which results in less memory use.

� The effects of shared libraries in an Informix ESQL/C executable are
transparent to the user.

Although shared libraries save both disk and memory space, when an Informix
ESQL/C application uses them, it must perform the following overhead tasks:

� Dynamically load the shared library into memory for the first time
� Perform link-editing operations
� Execute library position-independent code

Linux LD_LIBRARY_PATH

Windows LIB

Platform Environment variable
132 IBM Informix Developer’s Handbook

These overhead tasks can incur runtime penalties and are not necessary when
you use static libraries.

4.4.2 Performing database operations

In this section, we discuss how to perform basic database operations in an
ESQL/C application:

� Database connections
� Simple SQL statements (SELECT, INSERT, UPDATE, and DELETE)
� Static and dynamic SQL
� Calling SQL routines (stored procedures)
� Using transactions

In the program, we try to make use of most commonly used data types. For
information about other data types, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
esqlc.doc/sii-03-sourceforchaptitle.htm

Database connections
When an Informix ESQL/C application executes, it has no connections to any
database server. For SQL statements to run, however, such a connection must
exist. To establish a connection to a database server, the Informix ESQL/C
program must take the following actions:

1. Use an SQL statement to establish a connection to the database server.

2. Specify, in the SQL statement, the name of the database server to which to
connect.

The client application connects to the default database server when the
application does not explicitly specify a database server for the connection. You
must set the INFORMIXSERVER environment variable even if the application
does not establish a connection to the default database server.

If user name and password are not explicitly specified using the InetLogin
structure or the USER clause, the default user ID is used to attempt the
connection. The default user ID is the login name of the user who is running the
application.
 Chapter 4. Working with ESQL/C 133

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.esqlc.doc/sii-03-sourceforchaptitle.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.esqlc.doc/sii-03-sourceforchaptitle.htm

Example 4-3 shows a statement that connects to the stores_demo database
under the demo_on instance.

Example 4-3 Database connection statement

EXEC SQL connect to 'stores_demo@demo_on';
EXEC SQL connect to stores_demo user :username using :password;

For more information about database connections in ESQL/C, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/s
ii12164286.htm#sii12164286

Simple SQL statements
There are several way to execute an SQL statement from an ESQL/C application.
The application must choose an appropriate method based on the nature of the
SQL statement.

� SQL statements that do not return a result set of data such as INSERT,
DELETE, UPDATE, or Data Definition Language (DDL) can be executed
using the EXEC SQL command (same as the $ prefix) or the EXEC SQL
execute immediate statement. Both methods produce the same C code.

EXEC SQL execute immediate :cmdstring;
$CREATE TABLE my_customer (fname char(20));

If the SQL statement is going to be executed more than one time during the
life of the application, it can be prepared with the EXEC SQL PREPARE
command and then executed when required using the EXEC SQL EXECUTE
command:

EXEC SQL prepare d_id from :stmt_buf;
EXEC SQL execute d_id;

� SQL statements that return one row can be executed using the EXEC SQL
EXECUTE INTO command. These types of statement are normally referred
as singleton statements.

EXEC SQL SELECT specs into :mspecs FROM my_customer WHERE customer_num=2;

� SQL statements that return more than one row are executed using a select
cursor:

EXEC SQL declare cursor1 cursor for SELECT fname into :var1 from customer;
EXEC SQL open cursor1;
EXEC SQL fetch cursor1;
134 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/sii12164286.htm#sii12164286
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/sii12164286.htm#sii12164286

Example 4-4 demonstrates how to execute an SQL statement using some of
these previously described methods.

Example 4-4 Simple SQL statements (INSERT, UPDATE, and DELETE)

#include <stdio.h>
#include <string.h>
EXEC SQL include sqlca;
EXEC SQL include sqltypes;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
char cmdstring[4096];
string *fname[5] = { "Ludwig","Carole", "Philip", "Anthony", "Raymond" };
string *lname[5] = { "Pauli", "Sadler", "Currie", "Higgins", "Vector" };
string *company[5] = {"All Sports Supplies","Sports Spot", "Phil's Sports", "Play
Ball!", "Los Altos Sports" };
char pref='t';
char *specs[5] = { "This is just any string ", "This is just another string ",
"This is the third string", "This is one more string", "This is the last string"};
lvarchar mspecs[250];

char *order_date[5] = {"08/01/77","08/02/77","08/03/77","08/04/77","08/05/77"};
float ship_charge[5] = {10000.59,590000.32,345577.12,987098.32,876893.22};
char *ship_duration[5] = {"10:10:10","11:11:11","22:22:22","33:33:33","44:44:44"};

EXEC SQL END DECLARE SECTION;
$WHENEVER ERROR STOP;
int i;

EXEC SQL connect to 'stores_demo';

$ CREATE TABLE my_customer (
customer_num bigserial,
fname char(15),
lname char(15),
company char(30),
preferred boolean,
specs lvarchar
);

$ CREATE TABLE my_orders (
order_num bigserial,
order_date date ,
customer_num bigint,
ship_charge money(10,2),
ship_duration INTERVAL hour to second
);

for (i = 0; i < 5 ; i++)
 {
 $INSERT INTO my_customer VALUES (
 0,
 Chapter 4. Working with ESQL/C 135

 :fname[i],
 :lname[i],
 :company[i],
 :pref,
 :specs[i]
);
 }
for (i = 0; i < 5 ; i++)
 {
 sprintf(cmdstring, "INSERT INTO my_orders VALUES (10000001,'%s',%d,%f,'%s');",
order_date[i], i,ship_charge[i], ship_duration[i]);
 EXEC SQL execute immediate :cmdstring;
 }

sprintf(cmdstring, "UPDATE my_customer SET specs='This is a new spec' WHERE customer_num
= 2");
EXEC SQL execute immediate :cmdstring;
if (SQLCODE != 0)
 printf("SQLCODE=%d\n",SQLCODE);

sprintf(cmdstring, "DELETE FROM my_customer where customer_num=3");
EXEC SQL execute immediate :cmdstring;
if (SQLCODE != 0)
 printf("SQLCODE=%d\n",SQLCODE);

EXEC SQL SELECT specs into :mspecs FROM my_customer WHERE customer_num=2;
if (SQLCODE != 0)
 printf("SQLCODE=%d\n",SQLCODE);
else
 printf("The spec for the customer is :%s\n", mspecs);
}

For additional information regarding the execution of SQL statements, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.e
sqlc.doc/esqlc298.htm

Static and dynamic SQL
The SQL statements shown in Example 4-4 on page 135 are all static SQL
statements. With a static SQL statement, all the information that is needed is
known at compile time. However, in some applications the programmer does not
know the contents or possibly even the types of SQL statements that the
program needs to execute. For example, a program might prompt the user to
enter a SELECT statement, so that the programmer has no idea what columns
are accessed when the program runs.

Such applications require dynamic SQL statements. Dynamic SQL statements
allow an IBM Informix ESQL/C program to build an SQL statement at run time, so
that the contents of the statement can be determined by user input.
136 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.esqlc.doc/esqlc298.htm

Example 4-5 shows how to use dynamic SQL in a program.

Example 4-5 Dynamic SQL statements

#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqltypes;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
int i1;
char cmdstring[2048];
char c1[50];
char c2[50];
EXEC SQL END DECLARE SECTION;
int i2;

EXEC SQL connect to 'stores_demo';

printf("Enter the customer number [101-128] to see the names:");
scanf("%d", &i1);
sprintf (cmdstring, "SELECT fname,lname from customer where customer_num = ?");
EXEC SQL prepare ex_id from :cmdstring;
EXEC SQL execute ex_id into :c1,:c2 using :i1;
;
if (SQLCODE == 100)
{
printf("SQLCODE=%d\n",SQLCODE);
printf("Data not found\n");
}
else
{
printf("SQLCODE=%d\n",SQLCODE);
printf("Data found \n");
printf("Last Name \t%s\n",c1);
printf("First Name \t%s\n",c2);
}
}

OUTPUT:
Enter the customer number [101-128] to see the names:102
SQLCODE=0
Data found
Last Name Carole
First Name Sadle
 Chapter 4. Working with ESQL/C 137

The SELECT statement shown in Example 4-5 on page 137 is called a singleton
SELECT statement because it returns only one row. For SELECT statements
that return multiple rows, you must use a SELECT cursor statement.
Example 4-6 shows how to use cursor for SELECT statements that return
multiple rows.

Example 4-6 Using cursor for SELECT statements that return multiple rows

#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqltypes;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
int i;
char cmdstring[2048];
char c1[50];
char c2[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL connect to 'stores_demo';

printf("Enter customer number [103 - 128] :");
scanf("%d", &i);
sprintf (cmdstring, "SELECT fname,lname from customer where customer_num < ?;");
EXEC SQL prepare ex_id from :cmdstring;
EXEC SQL declare ex_cursor cursor for ex_id;
EXEC SQL open ex_cursor using :i;

/* Print out what DESCRIBE returns*/
for (;;)
{
EXEC SQL fetch ex_cursor into :c1,:c2;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;
if (SQLCODE == 100)
{
printf("SQLCODE=%d\n",SQLCODE);
printf("Data not found\n");
}
else
{
printf("%s\t%s\n",c1,c2);
}
}

OUTPUT:
Enter customer number [103 - 128] : 108
Ludwig Pauli
Carole Sadler
Philip Currie
138 IBM Informix Developer’s Handbook

Anthony Higgins
Raymond Vector
George Watson
Charles Ream

For more details about dynamic SQL and the cursors, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/s
ii-sc3dysq-35492.htm#sii-sc3dysq-35492

Calling SQL routines
In this section, we demonstrate how to call an SQL routine from an ESQL/C
application. You can accomplish a wide range of objectives with SQL routines,
including improving database performance, simplifying writing applications, and
limiting or monitoring access to data. Because an SQL routine is stored in an
executable format, you can use it for repeated tasks to improve performance.
When you invoke an SPL routine, rather than straight SQL code, you can bypass
repeated parsing, validity checking, and query optimization.

Example 4-7 shows a simple program that contains an SPL routine that receives
arguments price and percent tax and that returns price after adding the tax.

Example 4-7 Calling SQL routines

#include <stdio.h>
$ INCLUDE sqlca.h;
$ INCLUDE sqltypes.h;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
char cmdstring[2048];
float n1,n2;
int i=2;
EXEC SQL END DECLARE SECTION;

EXEC SQL whenever sqlerror stop;
EXEC SQL CONNECT TO 'stores_demo';

sprintf(cmdstring, "CREATE FUNCTION inc_price(n1 money(8,2), n2 int) RETURNING
money(8,2) RETURN(n1 + (n1 *n2)/ 100); END FUNCTION;");
EXEC SQL execute immediate :cmdstring;

sprintf(cmdstring, "SELECT FIRST 5 total_price, inc_price(total_price,?) from items ;");
EXEC SQL prepare ex_id from :cmdstring;
EXEC SQL declare ex_cursor cursor for ex_id;
EXEC SQL open ex_cursor using :i;

/* Print out what DESCRIBE returns*/
for (;;)
{

 Chapter 4. Working with ESQL/C 139

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/sii-sc3dysq-35492.htm#sii-sc3dysq-35492

EXEC SQL fetch ex_cursor into :n1,:n2;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;
if (SQLCODE == 100)
{
printf("SQLCODE=%d\n",SQLCODE);
printf("Data not found\n");
}
else
{
printf("%f\t%f\n",n1,n2);
}
}
}

OUTPUT:
250.000000 255.000000
960.000000 979.200012
240.000000 244.800003
20.000000 20.400000
840.000000 856.799988

Using transactions
A transaction is a collection of SQL statements that are treated as a single unit of
work. All the SQL statements that you issue in an ANSI-compliant database are
contained in transactions automatically. With a database that is not ANSI
compliant, transaction processing is an option.

In a database that is not ANSI compliant, a transaction is enclosed by a BEGIN
WORK statement and a COMMIT WORK or a ROLLBACK WORK statement. In
an ANSI-compliant database, the BEGIN WORK statement is unnecessary,
because all statements are contained in a transaction automatically. You need to
indicate only the end of a transaction with a COMMIT WORK or ROLLBACK
WORK statement.

Example 4-8 shows an example using transactions.

Example 4-8 Using transactions

#include <stdio.h>
$include "sqlca.h";
$include "sqlhdr.h";
$include "sqltypes.h";

main()
{

EXEC SQL BEGIN DECLARE SECTION;
140 IBM Informix Developer’s Handbook

int n1;
char c1[20];
EXEC SQL END DECLARE SECTION;

EXEC SQL whenever sqlerror stop;

EXEC SQL CREATE DATABASE itso WITH LOG;

EXEC SQL CREATE TABLE t1(num serial, name char(20));
EXEC SQL BEGIN WORK;
EXEC SQL INSERT INTO t1 VALUES (0,'name1');
EXEC SQL INSERT INTO t1 VALUES (0,'name2');
EXEC SQL INSERT INTO t1 VALUES (0,'name3');
EXEC SQL ROLLBACK;
EXEC SQL BEGIN WORK;
EXEC SQL INSERT INTO t1 VALUES (0,'name4');
EXEC SQL INSERT INTO t1 VALUES (0,'name5');
EXEC SQL COMMIT;

EXEC SQL declare ifx_cursor cursor for select num,name into :n1,:c1 from t1;
EXEC SQL open ifx_cursor ;
for (;;)
{
EXEC SQL fetch ifx_cursor;
if (sqlca.sqlcode!=0)
break;
printf("%d\t%s\n",n1,c1);
}
EXEC SQL close ifx_cursor;
EXEC SQL free ifx_cursor;
}

OUTPUT:
4 name4
5 name5

4.4.3 Data types mapping

This section contains information about the correspondence data types between
SQL and C and how to handle data types in an IBM Informix ESQL/C program.

When a query is executed by the application, the data that the Informix server
returns might be in a different format than the format that the application uses.
The ESQL/C converts the data passed between the application and the
database server. This process is transparent to the application. The only
requirement for the application is to specify the correct data types in ESQL/C.
 Chapter 4. Working with ESQL/C 141

Table 4-3 lists a few ESQL/C data type mapping as examples.

Table 4-3 Informix data type mapping

For a complete list of all the Informix SQL to ESQL/C data type mapping, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
esqlc.doc/sii03147680.htm

4.4.4 Handling special data types

This section describe how to work with Informix specific data types. We discuss
the following data types:

� Smart large objects (BLOB and CLOB)
� Collection data types (LIST, MULTISET, and SET)
� ROW data type

To store large objects inside database, you can use data types such as TEXT,
BYTE, BLOB, and CLOBS. Informix supports simple large objects and smart
large objects. Simple large objects are the TEXT and BYTE types that exist
primarily for compatibility with earlier versions of Informix applications. The smart

Informix SQL ESQL/C

BOOLEAN boolean

BYTE loc_t

LVARCHAR lvarchar

NCHAR(n) fixchar [n] or string [n+1]

NVARCHAR(m) varchar[m+1] or string [m+1]

SERIAL8 int8 or ifx_int8_t

TEXT loc_t

BLOB ifx_lo_t

CLOB ifx_lo_t

LIST(e) collection

MULTISET(e) collection

Opaque data type lvarchar, fixed binary, or var binary

ROW(...) row

SET(e) collection
142 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.esqlc.doc/sii03147680.htm

large objects are the BLOB and CLOBs. When you write new applications that
need to access large objects, use smart large objects to hold character (CLOB)
and binary (BLOB) data.

Table 4-4 summarizes the advantages that smart large objects present over
simple large objects.

Table 4-4 Advantages of smart blobs over simple blobs

Example using CLOB and BLOBs
Informix ESQL/C supports the SQL data types CLOB and BLOB with the
ifx_lo_t data type. Because of the potentially huge size of smart large object
data, the Informix ESQL/C program does not store the data directly in a host
variable. Instead, the client application accesses the data as a file-like structure.
To use smart large object variables in an Informix ESQL/C program, take the
following actions:

1. Declare a host variable with the ifx_lo_t data type.

2. Access the smart large object with a combination of the following three data
structures:

– The LO-specification structure, ifx_lo_create_spec_t
– The LO-pointer structure, ifx_lo_t
– An integer LO file descriptor

Smart large objects are stored logically in a table column but stored physically in
a specific type of dbspaces called smart blob space (sbspace). You must create

Large object feature Simple large objects Smart large objects

Maximum size of data 2 gigabytes 4 terabytes

Data accessibility No random access to data Random access to data

Reading the large object The database server reads
a simple large object on an
all or nothing basis.

Library functions provide
access that is similar to
accessing an
operating-system file. You
can access specified
portions of the smart large
object.

Writing the large object The database server
updates a simple large
object on an all or nothing
basis.

The database server can
rewrite only a portion of a
smart large object.

Data logging Data logging is always on. Data logging can be turned
on and off.
 Chapter 4. Working with ESQL/C 143

the sbspace in the server before you can run this example. For details about
creating the sbspace, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/i
ds_admin_0491.htm

Example 4-9 illustrates how to work with BLOB and CLOB data types using
ESQL/C functions. The filetoclob and filetoblob functions are used to enter
the CLOB and BLOB data respectively. If your files are located on the client
system, then use the client name as the second argument to the filetoblob
function. If your files are located on the server system, then use the server name
as the second argument.

The output is a part of the file that you insert as a BLOB. In this example, we
used a readme.txt file.

Example 4-9 The ifx_lo_sample.ec file

#include <stdio.h>
$include "sqlca.h";
$include "sqlhdr.h";
$include "sqltypes.h";

main()
{
int error, ic1, oflags, cflags, extsz, imsize, isize, iebytes;
time_t time;
struct tm *date_time;
char col_name[300]="test", sbspc[129];

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'blob' ifx_lo_t c2;
 char srvr_name[256];
 ifx_lo_create_spec_t *cspec;
 ifx_lo_stat_t *stats;
 ifx_int8_t size, c1, estbytes, maxsize;
 int lofd;
 long atime, ctime, mtime, refcnt;
EXEC SQL END DECLARE SECTION;

EXEC SQL whenever sqlerror stop;
EXEC SQL connect to 'stores_demo';

EXEC SQL create table t2 (c1 int, c2 blob);
EXEC SQL insert into t2 values (1,filetoblob ('/tmp/README.txt', 'server','t2','c2'));

EXEC SQL declare ifxcursor cursor for select c1,c2 into :c1,:c2 from t2 for update;

EXEC SQL open ifxcursor;
for (;;)
 {
144 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0491.htm

 EXEC SQL fetch ifxcursor;
 if (sqlca.sqlcode!=0)
 break;
 lofd = ifx_lo_open(&c2, LO_RDWR, &error);
 ifx_lo_read(lofd, srvr_name, 256, &error);
 printf("Value: %s\n",srvr_name);
 ifx_lo_write(lofd,col_name,5,&error);

 ifx_lo_close(lofd);
}

EXEC SQL close ifxcursor;
EXEC SQL free ifxcursor;

ifx_lo_close(lofd);
}

For more information about the ESQL/C functions to create, alter, and access
BLOB and CLOB data, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
esqlc.doc/sii-03-sourceforchaptitle.htm

Example using collection data types
Collection data types (SET, LIST, and MULTISET) enable you to store and
manipulate collections of data within a single row of a table. A collection data
type has two components:

� A type constructor, which determines whether the collection type is a SET,
MULTISET, or LIST

� An element type, which specifies the type of data that the collection can
contain

The elements of a collection can be of any data type. The elements of a
collection are the values that the collection contains. In a collection that contains
the values {'blue', 'green', 'yellow', and 'red'}, blue represents a single
element in the collection. Every element in a collection must be of the same type.
For example, a collection whose element type is INTEGER can contain only
integer values.

Informix ESQL/C uses collection variables to access collection data types. A
collection variable stores the elements from a collection column as though they
were rows in a table. You can use this virtual table as part of a cursor declaration
to fetch the individual elements of the collection column.
 Chapter 4. Working with ESQL/C 145

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.esqlc.doc/sii-03-sourceforchaptitle.htm

Example 4-10 shows the ESQL/C commands that are used to retrieve an
element from a collection column. The parents column is a collection of INT
values. The collection is stored into the host variable hv1 and is used to open a
cursor using the variable as a virtual table, table(:hv1).

Example 4-10 The collection_sample

EXEC SQL client collection hv1;
EXEC SQL int parent_id;
EXEC SQL select parents into :hv1 from grade12_parents where class_id = 1;
EXEC SQL declare cur1 cursor for select id from table(:hv1);
EXEC SQL open cur1;
EXEC SQL fetch cur1 into :parent_id;

The INT elements of the collection are retrieved from the host variable using the
EXEC SQL fetch cur1 command.

Example 4-11 shows a complete ESQL/C program that illustrates how to insert
and select into tables that contain the collection data types.

Example 4-11 Example using collection types

#include <stdio.h>

static void print_collection(
const char *tag,
EXEC SQL BEGIN DECLARE SECTION;
parameter client collection c
EXEC SQL END DECLARE SECTION;
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int4 value;
 EXEC SQL END DECLARE SECTION;
 mint item = 0;

 EXEC SQL WHENEVER ERROR STOP;
 printf("COLLECTION: %s\n", tag);
 EXEC SQL DECLARE c_collection CURSOR FOR
 SELECT * FROM TABLE(:c);
 EXEC SQL OPEN c_collection;
 while (sqlca.sqlcode == 0)
 {
 EXEC SQL FETCH c_collection INTO :value;
 if (sqlca.sqlcode != 0) break;
 printf("\tItem %d, value = %d\n", ++item, value);
 }
 EXEC SQL CLOSE c_collection;
 EXEC SQL FREE c_collection;
}

146 IBM Informix Developer’s Handbook

mint main(int argc, char **argv)
{
 EXEC SQL BEGIN DECLARE SECTION;
 client collection list (integer not null) lc1;
 client collection set (integer not null) sc1;
 client collection multiset (integer not null) mc1;
 char *dbase = "stores_demo";
 mint seq;
 char *stmt1 =
 "INSERT INTO t_collections VALUES(0, "
 "'LIST{-1,0,-2,3,0,0,32767,249}', 'SET{-1,0,-2,3}', "
 "'MULTISET{-1,0,0,-2,3,0}') ";
 EXEC SQL END DECLARE SECTION;
if (argc > 1)
 dbase = argv[1];
 EXEC SQL WHENEVER ERROR STOP;
 printf("Connect to %s\n", dbase);
 EXEC SQL connect to :dbase;

 EXEC SQL CREATE TEMP TABLE t_collections
 (
 seq serial not null,
 l1 list (integer not null),
 s1 set (integer not null),
 m1 multiset(integer not null)
);

 EXEC SQL EXECUTE IMMEDIATE :stmt1;

 EXEC SQL ALLOCATE COLLECTION :lc1;
 EXEC SQL ALLOCATE COLLECTION :mc1;
 EXEC SQL ALLOCATE COLLECTION :sc1;

 EXEC SQL DECLARE c_collect CURSOR FOR
 SELECT seq, l1, s1, m1 FROM t_collections;
 EXEC SQL OPEN c_collect;

 EXEC SQL FETCH c_collect INTO :seq, :lc1, :sc1, :mc1;
 EXEC SQL CLOSE c_collect;
 EXEC SQL FREE c_collect;

 print_collection("list/integer", lc1);
 print_collection("set/integer", sc1);
 print_collection("multiset/integer", mc1);

 EXEC SQL DEALLOCATE COLLECTION :lc1;
 EXEC SQL DEALLOCATE COLLECTION :mc1;
 EXEC SQL DEALLOCATE COLLECTION :sc1;

 puts("OK");
 return 0;
}

 Chapter 4. Working with ESQL/C 147

Example 4-12 shows the output of Example 4-11 on page 146.

Example 4-12 Collection example output

Connect to stores_demo
COLLECTION: list/integer
 Item 1, value = -1
 Item 2, value = 0
 Item 3, value = -2
 Item 4, value = 3
 Item 5, value = 0
 Item 6, value = 0
 Item 7, value = 32767
 Item 8, value = 249
COLLECTION: set/integer
 Item 1, value = -1
 Item 2, value = 0
 Item 3, value = -2
 Item 4, value = 3
COLLECTION: multiset/integer
 Item 1, value = -1
 Item 2, value = 0
 Item 3, value = 0
 Item 4, value = -2
 Item 5, value = 3
 Item 6, value = 0
OK

4.4.5 Exception handling

The applications that you write require that the database server processes your
SQL statements successfully as you intend. If a query fails and you do not know
about the failure, you might display meaningless data to the user.

To handle such errors, an Informix ESQL/C program must check that every SQL
statement executes as you intend.

This section discusses the two widely used exception handling methods in
Informix applications development:

� Use the SQLSTATE variable and the GET DIAGNOSTICS statement to check
for runtime errors and warnings that your Informix ESQL/C program might
generate.

� Use the SQLCODE variable and the SQL Communications Area (sqlca) to
check for runtime errors and warnings that your Informix ESQL/C program
might generate.
148 IBM Informix Developer’s Handbook

For more information about ESQL/C Exception handling, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
esqlc.doc/sii-11-40709.htm

Exception handling with the SQLSTATE variable
After the database server executes an SQL statement, it sets the SQLSTATE
variable with a value that indicates the success or failure of the statement. From
this value, your program can determine if it needs to perform further diagnostics.
If the SQLSTATE variable indicates a problem, you can use the GET
DIAGNOSTICS statement to obtain more information.

Example 4-13 shows how to handle exceptions using the SQLSTATE variable
and the GET DIAGNOSTICS statement. The GET DIAGNOSTICS statement
returns information that is held in the fields of the diagnostics area. The
diagnostics area is an internal structure that the database server updates after it
executes an SQL statement. Each application has one diagnostics area.

Example 4-13 Error handling in ESQL/C

#include <stdio.h>
#include <stdio.h>

void error_chk()
{
EXEC SQL BEGIN DECLARE SECTION;
 mint excp_count;
 char overflow[2];
 mint excp_num=1;
 char message[255];
 mint mlen;
 char sql_state_code[6];
 mint i=1;
EXEC SQL END DECLARE SECTION;
 printf("SQLSTATE: %s\n",SQLSTATE);
 printf("SQLCODE: %d\n", SQLCODE);
 printf("\n");

 EXEC SQL get diagnostics :excp_count = NUMBER, :overflow = MORE;

EXEC SQL get diagnostics exception :i :sql_state_code = RETURNED_SQLSTATE, :message =
MESSAGE_TEXT, :mlen = MESSAGE_LENGTH;
 printf("EXCEPTION %d: SQLSTATE=%s\n", i, sql_state_code);
 message[mlen-1] = '\0';
 printf("MESSAGE TEXT: %s\n", message);
}

mint main(int argc, char **argv)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *dbase = "stores_demo";
 Chapter 4. Working with ESQL/C 149

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.esqlc.doc/sii-11-40709.htm

 EXEC SQL END DECLARE SECTION;

 if (argc > 1)
 dbase = argv[1];
 EXEC SQL WHENEVER sqlerror CALL error_chk ;

 printf("Connect to %s\n", dbase);
 EXEC SQL connect to :dbase;

 EXEC SQL SELECT province FROM customer WHERE customer_num=1;
 return 0;
}

OUTPUT:
Connect to stores_demo
SQLSTATE: IX000
SQLCODE: -217

EXCEPTION 1: SQLSTATE=IX000
MESSAGE TEXT: Column (province) not found in any table in the query (or SLV is
undefined).

4.4.6 Troubleshooting

In this section, we list frequent ESQL/C errors and discuss how to diagnose a
problem using the trace facility. The following typical errors can occur in ESQL/C
applications:

� Locale mismatch

The most common error you might encounter when writing ESQL/C
application is a locale mismatch error:

-23197 Database locale information mismatch

The straight forward solution is to match all the locale-related environment
variables, namely CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE.
The default values for CLIENT_LOCALE are en_us.8859-1 for UNIX and
en_us.1252 for Windows systems. You can set these variables using the
export (ksh) or setenv (csh) commands, depending on which shell you are
using. On Windows systems, you can set the locale using the setnet32.exe
utility.

For more information about these locales and related material, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.
ibm.glsug.doc/ids_gug_035.htm
150 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.glsug.doc/ids_gug_035.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.glsug.doc/ids_gug_035.htm

� Compile and linking errors

If there is a problem with the compile or linking, the following error message is
returned:

error while loading shared libraries: libifsql.so: cannot open shared
object file: No such file or directory

This error is due generally to a wrong setting of the shared library path. Refer
to 4.4.1, “Creating an ESQL/C application” on page 128 for information about
the correct settings.

� Database connection errors

if there is an issue with the database connection, the following error message
is returned:

-25596 The INFORMIXSERVER value is not listed in the sqlhosts file or the
Registry.

This error is due to incorrect setting of INFORMIXSERVER variable. Verify
that it is set to the server instance to which you want to connect.

The SQLIDEBUG trace
ESQL/C uses the SQLI protocol to communicate with the Informix database
server. The SQLIDEBUG trace allows you to trace all the messages between the
client and server. You can use it to diagnose problems such as SQL errors,
unexpected return values, or performance issues.

You can enable the SQLIDEBUG trace on both the client and the server side.

On the server side, you can enable SQLIDEBUG using the onmode -p 1
sqli_dbg parameter.

To set SQLIDEBUG on the client side, create the environment variable
SQLIDEBUG with the following format:

sqlidebug=2:path_trace_file

where path_trace_file corresponds to the location and name of the trace file.

Example 4-14 shows how to create the variable on a UNIX platform and how to
decode the SQLI trace file using the sqliprint utility, which is included as part of
Client SDK.

Example 4-14 The SQLIDEBUG trace

informix@irk:/work$ export SQLIDEBUG=2:/tmp/sqlitrace
informix@irk:/work$
informix@irk:/work$ sqliprint /tmp/sqlitrace_17008_0_8c819d0 | more
...
 Chapter 4. Working with ESQL/C 151

C->S (16) Time: 2010-07-06 20:21:58.05185
 SQ_DBOPEN
 "stores7" [7]
 NOT EXCLUSIVE
 SQ_EOT

S->C (28) Time: 2010-07-06 20:21:58.05487
 SQ_DONE
 Warning..: 0x15
 # rows...: 0
 rowid....: 0
 serial id: 0
 SQ_COST
 estimated #rows: 1
 estimated I/O..: 1
 SQ_EOT

C->S (56) Time: 2010-07-06 20:21:58.05595
 SQ_PREPARE
 # values: 1
 CMD.....: "SELECT code, sname FROM state WHERE code = ?" [44]
 SQ_NDESCRIBE
 SQ_WANTDONE
...
152 IBM Informix Developer’s Handbook

Chapter 5. Working with the JDBC
drivers

In this chapter, we describe how to develop a Java application using the two
available Java Database Connectivity (JDBC) drivers. This chapter includes the
following topics:

� JDBC drivers for an Informix database
� Setup and configuration
� JDBC type mapping
� Performing database operations
� Informix additional features

5

© Copyright IBM Corp. 2010. All rights reserved. 153

5.1 JDBC drivers for an Informix database

Java Database Connectivity (JDBC) is the JavaSoft specification of a standard
application programming interface (API) that allows Java programs to access
database management systems.

The JDBC API consists of a set of interfaces and classes written in the Java
programming language. Using these standard interfaces and classes,
programmers can write applications that connect to databases, send queries
written in structured query language (SQL), and process the results.

Because JDBC is a standard specification, one Java program that uses the
JDBC API can connect to any database management system (DBMS), as long
as a driver exists for that particular DBMS.

For more information about the JDBC API, refer to JDBC documentation at

http://java.sun.com/javase/6/docs/technotes/guides/jdbc/

You can use the following JDBC drivers from a Java application to process data
in an IBM Informix database:

� IBM Informix JDBC Driver
� IBM Data Server Driver for JDBC and SQLJ

Both JDBC drivers are developed as pure-Java drivers (Type 4). Thus, when you
use a Type 4 driver from a Java application, your session connects directly to the
database or database server without a middle layer.

5.1.1 IBM Informix JDBC Driver

IBM Informix JDBC Driver is a platform-independent, industry-standard Type 4
driver that provides enhanced support for distributed transactions.

Informix JDBC Driver follows the JDBC 3.0 specifications, providing support for
the following IBM Informix database engines:

� IBM Informix 7.x, 9.4x, 10.0, 11.10 and 11.50
� IBM Informix Extended Parallel Server (XPS) 8.5x
� IBM Informix Standard Engine (SE) 7.x
� IBM Informix OnLine Version 5.x

To use IBM Informix JDBC Driver Version 3.50.JC6, you must use a JDK 1.4.2 or
later package on your platform.
154 IBM Informix Developer’s Handbook

http://java.sun.com/javase/6/docs/technotes/guides/jdbc/

You can download the Informix JDBC Driver from:

http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=ifxjdbc

Example 5-1 shows the contents of the Informix JDBC Driver package.

Example 5-1 Informix JDBC directory

demo
doc
 javadoc
 release
lib
 ifxjdbc.jar
 ifxjdbcx.jar
 ifxlang.jar
 ifxlsupp.jar
 ifxsqlj.jar
 ifxtools.jar
license
proxy

This is a brief explanation of the .jar files in the driver:

� ifxjdbc.jar

The optimized implementations of the JDBC API interfaces, classes, and
methods.

� ifxjdbcx.jar

The implementation of data source, connection pooling, and XA-related class
files.

� ifxlang.jar

The localized versions of all message text supported by the driver.

� ifxlsupp.jar

Support functions for the ifxlang.jar package.

� ifxsqlj.jar

The classes for runtime support of SQLJ programs.

� ifxtools.jar

The ClassGenerator, lightweight directory access protocol (LDAP) loader, and
other utilities.
 Chapter 5. Working with the JDBC drivers 155

http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=ifxjdbc

5.1.2 IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ, formerly known as IBM Driver for
JDBC and SQLJ, is a JDBC driver that uses the DRDA protocol to communicate
with IBM database servers. The use of a common communication protocol such
as DRDA means that the IBM Data Server Driver for JDBC and SQLJ allows you
to write client applications that can use both DB2 and Informix database servers.

The IBM Data Server Driver for JDBC and SQLJ is compliant with the JDBC 3.0
and JDBC 4.0 specifications. This driver is included as part of the IBM Data
Server Driver Package, which is bundled with Informix Client Software
Development Kit (Client SDK). IBM Data Server Driver for JDBC and SQLJ is
also available as a separate download at:

http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg24026929

Example 5-2 shows a listing of the files that are included in the IBM Data Server
Driver for JDBC and SQLJ installation package and highlights important files.

Example 5-2 Data Server Driver for JDBC directory (snippet)

db2jcc.jar
db2jcc4.jar
sqlj.zip
sqlj4.zip
jdbc4_LI_en
jdbc4_LI_en.rtf
jdbc_LI_en

The Data Server Driver for JDBC and SQLJ includes the following JDBC drivers:

� db2jcc.jar

Use the db2jcc.jar file in the CLASSPATH if you plan to use the version of
the IBM Data Server Driver for JDBC and SQLJ that includes only JDBC 3.0
and earlier functions.

� db2jcc4.jar

Use the db2jcc4.jar file in the CLASSPATH if you plan to use the version of
the IBM Data Server Driver for JDBC and SQLJ that includes only JDBC 4.0
and earlier functions.

� sqlj.zip

Provides support for SQLJ Java applications. SQLJ is used to embed SQL
statements inside Java applications.

� sqlj4.zip

Type 4 driver for SQLJ applications.
156 IBM Informix Developer’s Handbook

http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg24026929

5.2 Setup and configuration

In this section, we discuss the setup and configuration parameters of Informix
JDBC drivers. We also discuss how to verify the connection with the Informix
database server.

5.2.1 Configuration

The Data Server Client Driver for JDBC requires the use of a DRDA connection.
Thus, the Informix database server must have an alias configured for DRDA
communications. Informix JDBC Driver uses native Informix protocol or SQLI and
requires no specific alias on the Informix database server when using the
Informix JDBC Driver.

On the database server, verify that the sqlhosts file contains the correct listeners
for the Informix database server.

Example 5-3 shows the sqlhosts file of the Informix server that we used in our
examples.

Example 5-3 Our sqlhosts file

demo_on onipcshm kefka demo_on
demo_on_tcp onsoctcp kefka 9088
demo_on_drda drsoctcp kefka 9089

For information regarding how to set up and configure a DRDA alias on the
Informix server, refer to 2.1.3, “Configuring Informix Server” on page 27.

On the client system, you must have one of the two JDBC drivers installed. For
information about the installation and configuration, refer to 2.2.3, “Setting up
IBM Data Server drivers” on page 43 and 2.2.4, “Setting up Informix JDBC” on
page 53.

To use any JDBC driver in an application, you must set the CLASSPATH
environment variable to point to the driver files. The CLASSPATH environment
variable tells the Java virtual machine (JVM) and other applications where to find
the Java class libraries that are used in a Java program.
 Chapter 5. Working with the JDBC drivers 157

Example 5-4 shows the CLASSPATH environment variable, which contains the
default location of both JDBC drivers.

Example 5-4 CLASSPATH example

set CLASSPATH=C:\Program Files\IBM\IBM DATA SERVER
DRIVER\java\db2jcc.jar;C:\Program
Files\IBM\Informix_JDBC_Driver\lib\ifxjdbc.jar;C:\Program
Files\IBM\Informix_JDBC_Driver\lib\ifxjdbcx.jar;%CLASSPATH%;.;

Products such as IBM Data Studio or IBM WebSphere® Application Server have
specific location and configuration files for the JDBC drivers. Always refer to each
individual documentation for setup details.

You can find additional information regarding the configuration of the
CLASSPATH environment variable in refer to 2.2.3, “Setting up IBM Data Server
drivers” on page 43 and 2.2.4, “Setting up Informix JDBC” on page 53.

5.2.2 Verify connectivity with Informix JDBC Driver

In this section, we demonstrate how to verify a correct setup and configuration of
the Informix JDBC Driver.

To load IBM Informix JDBC Driver, the application can use the following
Class.forName() Java method, passing the name of the Informix JDBC Driver as
argument:

Class.forName("com.informix.jdbc.IfxDriver");

Example 5-5 contains a basic Java program that can be used to verify the
connectivity with the Informix JDBC Driver. The connection string uses the
following parameters:

� The IBM Informix JDBC Driver identifier, jdbc:informix-sqli

� The database server host name, kefka.lenexa.ibm.com

You can also specify the IP address.

� The port number of the SQLI listener of the Informix server, 9088

� The database name, stores_demo

� Informix instance identified by the INFORMIXSERVER variable

� User and password for connecting to the database server
158 IBM Informix Developer’s Handbook

Example 5-5 SimpleConnection.java

import java.sql.*;

public class SimpleConnection {
 public static void main(String[] args) {

 String url =
"jdbc:informix-sqli://kefka.lenexa.ibm.com:9088/stores_demo:INFORMIXSERVER=demo
_on;user=informix;password=Ifmx4you";
 Connection conn = null;

 System.out.println("URL = \"" + url + "\"");

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 } catch (Exception e) {
 System.out.println("FAILED: failed to load Informix JDBC driver.");
 }

 try {
 conn = DriverManager.getConnection(url);
 } catch (SQLException e) {
 System.out.println("FAILED: failed to connect!");
 }

 try {
 System.out.println("Connected ...");
 DatabaseMetaData md = conn.getMetaData();
 System.out.println("Driver name: " + md.getDriverName());
 System.out.println("Driver version: " + md.getDriverVersion());
 System.out.println("Database product name: "
 + md.getDatabaseProductName());
 System.out.println("Database product version: "
 + md.getDatabaseProductVersion());

 } catch (SQLException e) {
 System.out.println("FAILED: failed to connect!");
 }

 try {
 conn.close();
 } catch (SQLException e) {
 System.out.println("FAILED: failed to close the connection!");
 }
System.out.println("Done!");
 }
}

 Chapter 5. Working with the JDBC drivers 159

Example 5-6 shows the compile line and output of the SimpleConnect.java
program.

Example 5-6 Running SimpleConnection.java

C:\RedBook>javac SimpleConnection.java

C:\RedBook>java SimpleConnection
URL =
"jdbc:informix-sqli://kefka:9088/stores_demo:INFORMIXSERVER=demo_on;user=i
nformix;password=Ifmx4you"
Connected ...
Driver name: IBM Informix JDBC Driver for IBM Informix Dynamic Server
Driver version: 3.50.JC6W1
Database product name: Informix Dynamic Server
Database product version: 11.50.FC7
Done!

5.2.3 Verify connectivity with the Data Server Driver

You can use the same Java program (Example 5-5 on page 159) to verify the
connection with the Data Server Driver for JDBC with minor changes. The
following changes are required:

� Load the Data Server JDBC Driver class using the Class.forName() method:

Class.forName("com.ibm.db2.jcc.DB2Driver");

� The name of the Data Server JDBC Driver in the connection string should be
jdbc:ids.

� The port number to use the Data Server Driver client is different from the
Informix JDBC client. A common mistake is to specify the SQLI port in the
URL that leads to an error such as the following error:

com.ibm.db2.jcc.am.io: [jcc][t4][2030][11211][3.58.82] A communication
error occurred during operations on the connection's underlying socket,
socket input stream,or socket output stream. Error location: Reply.fill().
Message: Insufficient data. ERRORCODE=-4499, SQLSTATE=08001
 at com.ibm.db2.jcc.am.ed.a(ed.java:319)
 at com.ibm.db2.jcc.t4.a.a(a.java:416)
160 IBM Informix Developer’s Handbook

Example 5-7 shows the changes to the SimpleConnection.java source code.
You do not need to specify the INFORMIXSERVER variable when using the IBM
Data Server Driver for JDBC.

Example 5-7 SimpleConnection.java with Data Server JDBC Driver

...

 Class.forName("com.ibm.db2.jcc.DB2Driver");
 } catch (ClassNotFoundException cnfe) {
 System.out.println("No such class available.");
 return;
 }
 try {
 con = DriverManager
 .getConnection("jdbc:ids://kefka:9089/stores_demo",
 "informix", "Ifmx4you");
 System.out.println("connected");
...

Example 5-8 shows how to compile and run the program. Notice that the
metadata information that the JDBC driver retrieves is slightly different from the
metadata retrieved with IBM Informix JDBC Driver.

Example 5-8 Output of SimpleConnection.java using the Data Server JDBC Driver

C:\RedBook>javac SimpleConnection.java

C:\RedBook>java SimpleConnection
connected
Driver name: IBM DB2 JDBC Universal Driver Architecture
Driver version: 3.58.82
Database product name: IDS/UNIX64
Database product version: IFX11500
connected
Done

5.3 JDBC type mapping

Mapping is a way of specifying data type equivalents. Because there are
variations between the SQL data types that are supported by each database
vendor, the JDBC API defines a set of generic SQL data types that to use on the
Java application. In addition to these data types, which are defined by the JDBC
driver, the Java language itself has its own data types that might differ from the
SQL types that the database vendor uses. When writing a Java application, the
 Chapter 5. Working with the JDBC drivers 161

programmer uses Java data types to manipulate the data. The application
developers needs to understand the equivalent data type in JDBC and the
equivalent data types on the database server.

Table 5-1 lists a few of the data type mapping that is required when working with
an IBM Informix database as examples.

Table 5-1 Data Type Mapping from JDBC to Informix basic data types

For the complete list of data type mappings between the Informix SQL data types
and the Informix JDBC Driver, refer to the JDBC Driver Programmer’s Guide at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jdbc_pg.doc
/sii-xc-21122.htm#sii-xc-21122

For more information regarding the data types that the IBM Data Server Driver for
JDBC and SQLJ use, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jccids.doc/
com.ibm.db2.luw.apdv.java.doc/doc/rjvjdata.htm

Java Type JDBC Type Informix Type

long BIGINT INT8, BIGINT, BIGSERIAL

byte[] BINARY, VARBINARY BYTE

boolean BIT BOOLEAN

java.sql.Date DATE DATE

java.math.BigDecimal DECIMAL DECIMAL

byte[] LONGVARBINARY BYTE or BLOB

java.lang.String LONGVARCHAR TEXT or CLOB

java.math.BigDecimal NUMERIC MONEY

float, java.lang.Float REAL SMALLFLOAT

java.sql.Time TIME DATETIME HOUR TO
SECOND

java.sql.Timestamp TIMESTAMP DATETIME YEAR TO
FRACTION(5)
162 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jccids.doc/com.ibm.db2.luw.apdv.java.doc/doc/rjvjdata.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jccids.doc/com.ibm.db2.luw.apdv.java.doc/doc/rjvjdata.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jdbc_pg.doc/sii-xc-21122.htm#sii-xc-21122

5.4 Performing database operations

In this section, we provide examples of how to use IBM Informix JDBC Driver and
IBM Data Server Driver for JDBC for typical database operations, such as
connection to the Informix database, and to manipulate data.

5.4.1 Connection to the database

A Java application can obtain a connection with an Informix database using one
of the following methods:

� Use the DriverManager class. This method involves loading the JDBC driver
using the Class.forName() method and obtaining a connection by calling the
getConnection() method:

Class.forName("com.ibm.db2.jcc.DB2Driver");
con = DriverManager.getConnection("jdbc:ids://...");

� Use a DataSource object through the javax.sql extensions.

DB2ConnectionPoolDataSource ds = new DB2ConnectionPoolDataSource();
PooledConnection poolconn = ds.getPooledConnection();
con = poolconn.getConnection();

The DriverManager class was implemented in the original JDBC 1.0 API. This
class provides direct access to all the JDBC driver features; however, it requires
the application to load the JDBC driver manually and to use a hard-coded
connection string with the connection details.

The DataSource interface was introduced in the JDBC 2.0 API as the preferred
method to obtain a JDBC connection. The application has no need to load a
JDBC driver class or provide hard-coded connection details. The interface needs
to know only the name of the DataSource object that it wants to use. The details
for the database connection are stored within the DataSource object definition
outside the application code.

Connecting using the DriverManager
When using the DriverManager class to connect to an IBM Informix database, a
connection string must be passed to the getConnection() method with the
details for the database server. These details include information such as the
system where the database server is running and the port number needed for the
connection.
 Chapter 5. Working with the JDBC drivers 163

Example 5-9 shows the syntax of the connection string used with Informix JDBC
Driver and IBM Data Server Driver for JDBC.

Example 5-9 DriverManager connection string syntax

jdbc:[jdbc-driver]://[{ip-address|host-name}:{port-number|service-name}][/dbnam
e]:INFORMIXSERVER=servername[{;user=user;password=password]

Connecting to an Informix database uses the following parameters:

� jdbc-driver

This parameter identifies a particular JDBC driver. Informix JDBC Driver uses
informix-sqli. IBM Data Server Driver for JDBC uses ids or db2.

� ip-address or host-name

This parameter specifies the system that is running the database server.

� port-number|service-name

This parameter specifies the communication port that the database server
uses.

� dbname

This parameter names the database to open after a successful connection
with the server.

� INFORMIXSERVER

This parameter identifies the name of the Informix database server to which
to connect. This parameter is not required when using Data Server JDBC
Driver.

� User and password

These parameters provide the authentication credentials for the connection.

In addition to these standard details, which are common to all JDBC drivers, the
connection string is also used to specify properties that are relevant only to a
specific JDBC driver or database server. Table 5-2 lists some of the properties
specific to Informix JDBC Driver.

Table 5-2 Informix JDBC Driver connection string

Parameter Description

DB_LOCALE Locale of the database in the database server.

CLIENT_LOCALE Locale used by the Client application

INFORMIXCONTIME Time-out value for a connection with the server

SQLIDEBUG Enable the trace of the SQLI protocol
164 IBM Informix Developer’s Handbook

IBM Data Server Driver for JDBC supports most of the Informix JDBC Driver
properties. For a complete list of the properties that are supported when
connecting to an Informix database server, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
jdbc_pg.doc/sii-02conect-66368.htm

Example 5-10 shows how to compile a basic Java code that connects to the
Informix database. The driver name and connection string are passed as
parameters for the program.

Example 5-10 A connect.java file

C:\work>set CLASSPATH=ifxjdbc.jar:db2jcc.jar:.
C:\work>type connect.java
import java.sql.*;

public class connect{
 public static void main(String [] args) {

 Connection conn = null;
 Statement is = null;

 if (args.length<2) {
 System.out.println("Need the JDBC driver and Connection_String as parameters");
 System.out.println(" java connect \"com.informix.jdbc.IfxDriver\"
\"jdbc:informix-sqli://kodiak:9088/stores_demo
:INFORMIXSERVER=demo_on;user=informix;password=password;\" ");
 return;
 }

 try {
 Class.forName(args[0]);
 conn = DriverManager.getConnection(args[1]);
 System.out.println("Connected to "+conn.getMetaData().getDatabaseProductName());
 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}

C:\work>javac connect.java
C:\work>java connect "com.informix.jdbc.IfxDriver"
"jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;

STMT_CACHE Enables SQL statement cache on the server

IFX_ISOLATION_LEVEL Specify the default Isolation Level for the session

Parameter Description
 Chapter 5. Working with the JDBC drivers 165

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.jdbc_pg.doc/sii-02conect-66368.htm

"
Connected to Informix Dynamic Server

C:\work>java connect "com.ibm.db2.jcc.DB2Driver"
"jdbc:ids://kodiak:9089/stores_demo:user=informix;password=password";
Connected to IDS/NT64

C:\work>

Connecting using the DataSource object extensions
When using a DataSource object, the information for the database connection is
stored as properties of the DataSource object. These properties are usually
stored in a Java Naming and Directory Interface (JNDI) service that is managed
by the Java runtime or the application server.

The application requires no knowledge about the specific connection details. It
makes use of the DataSource object to get a connection with the database
server.

In addition to the method implemented by the JDBC driver to set standard
properties, both Informix JDBC Driver and Data Server Driver for JDBC provide
extra methods to set and retrieve properties that are specific to the Informix
database. These properties have the same effect on the database session as the
Informix environment variables that are used by other Informix APIs, such as
ODBC or .NET.

Example 5-11 shows a DataSource object that is created using the Informix
JDBC Driver and how to set some of the DataSource object properties.

Example 5-11 DataSource object sample

IfxDataSource ds = new IfxDataSource();

ds.setServerName("demo_on");
ds.setDatabaseName("stores_demo");
ds.setPortNumber(9089);
ds.setIfxIFXHOST("kodiak");
ds.setIfxCLIENT_LOCALE("en_US.CP1252");
ds.getConnection("informix", "password");
166 IBM Informix Developer’s Handbook

You can use these Informix specific properties to modify the behavior of the
JDBC driver or to control particular features of the database server. Table 5-3
lists a portion of the DataSource object properties that are implemented in the
Informix JDBC Driver.

Table 5-3 DataSource object properties

For a complete list of all the available properties, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
jdbc_pg.doc/sii-xb-13590.htm

Because IBM Data Server Driver for JDBC supports both Informix and DB2
database servers, the DataSource object properties that it provides are different
from those provided by Informix JDBC Driver. For a complete list, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
jccids.doc/com.ibm.db2.luw.apdv.java.doc/doc/rjvdsprp.htm

Informix variable Method

CLIENT_LOCALE public String getIfxCLIENT_LOCALE()
public void setIfxCLIENT_LOCALE()

DB_LOCALE public String getIfxDB_LOCALE()
public void setIfxDB_LOCALE()

IFX_ISOLATION_LEVEL public String getIfxIFX_ISOLATION_LEVEL()
public void setIfxIFX_ISOLATION_LEVEL (l)

IFX_LOCK_MODE_WAIT public int getIfxIFX_LOCK_MODE_WAIT()
public void setIfxIFX_LOCK_MODE_WAIT ()

SQLIDEBUG public String getIfxSQLIDEBUG ()
public void setIfxSQLIDEBUG ()

STMT_CACHE public String getIfxSTMT_CACHE()
public void setIfxSTMT_CACHE()

USEV5SERVER public boolean isIfxUSEV5SERVER()
public void setIfxUSEV5SERVER()
 Chapter 5. Working with the JDBC drivers 167

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.jdbc_pg.doc/sii-xb-13590.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.jccids.doc/com.ibm.db2.luw.apdv.java.doc/doc/rjvdsprp.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.jccids.doc/com.ibm.db2.luw.apdv.java.doc/doc/rjvdsprp.htm

5.4.2 Manipulating data

In this section, we provide basic examples of how to perform typical data
manipulation tasks using a JDBC driver with an IBM Informix database.

Simple SQL statements
A Java application can use a Statement object to run basic SQL statements
against the database server. The Statement interface provides two methods:

� executeQuery() returns a ResultSet value

Use this method to run SQL statements that return data (for example, a
SELECT SQL statement).

� executeUpdate() returns the number of rows effected by the SQL statement

Use this method to perform INSERT, DELETE, and UPDATE operations or to
run Data Definition Language (DDL) statements.

Example 5-12 demonstrates how to perform a DELETE statement using the
executeUpdate() method.

Example 5-12 An executeUpdate sample

C:\work>type delete.java
import java.sql.*;

public class delete{
 public static void main(String [] args) {

 Connection conn = null;
 Statement is = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn =
DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/stores_demo:INFOR
MIXSERVER=demo_on");

 is = conn.createStatement();
 int rc=is.executeUpdate("DELETE FROM state WHERE code='"+args[0]+"'");

 System.out.format("Deleted %d rows",rc);

 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
168 IBM Informix Developer’s Handbook

}

C:\work>
C:\work>java delete AZ
Deleted 1 rows
C:\work>

Prepare SQL statement with parameters
You can use the PreparedStatement object to run the prepared SQL statement
against the database server. Use the PreparedStatement object when the
application uses an SQL statement repeatedly. The application can run the SQL
statement multiple times with different values, which saves the time that the
application takes to process and optimize an SQL statement.

Example 5-13 demonstrates how to use a PreparedStatement object. The
example inserts a row in the state table using the parameters that are supplied
through the command line.

Example 5-13 An insert.java sample

C:\work>cat insert.java
import java.sql.*;
import java.util.*;
import java.text.*;

public class insert{
 public static void main(String [] args) {

 Connection conn = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn =
DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/stores_demo:INFOR
MIXSERVER=demo_on");

 PreparedStatement pstmt=conn.prepareStatement("INSERT INTO state
VALUES(?,?,?)");
 pstmt.setString(1, args[0]);
 pstmt.setString(2, args[1]);
 pstmt.setString(3, args[2]);

 int rc=pstmt.executeUpdate();

 System.out.format("Inserted %d rows",rc);
 Chapter 5. Working with the JDBC drivers 169

 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}

C:\work>java insert AZ Arizona 0
Inserted 1 rows
C:\work>

Retrieve data from a database table
To retrieve data from a database table or a function that returns more than one
row, a JDBC application must use the ResultSet object. When the
executeQuery() method from the Statement or PreparedStatement object is call,
the data is returned in the form of a ResultSet object. This object allows the
fetching of rows from the database.

Example 5-14 demonstrates how to run an SQL SELECT statement to retrieve
data using the PreparedStatement and ResultSet objects. The result of the
prepare statement is stored in the ResultSet object, dbRes. After that, the
dbRes.next() method is used to scroll through the ResultSet data.

Example 5-14 A select.java sample

C:\work>cat select.java
import java.sql.*;

public class select {
 public static void main(String [] args) {

 Connection conn = null;
 ResultSet dbRes = null;
 Statement is = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn =
DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/stores_demo:INFOR
MIXSERVER=demo_on;’);

 PreparedStatement pstmt=conn.prepareStatement("SELECT * FROM state where
code<?");
 pstmt.setString(1, args[0]);

 pstmt.executeQuery();
170 IBM Informix Developer’s Handbook

 dbRes = pstmt.getResultSet();

 while (dbRes.next()) {
 System.out.format("%s,",dbRes.getString(1));
 System.out.format("%s,",dbRes.getString(2));
 System.out.format("%f\n",dbRes.getDouble(3));
 }

 dbRes.close();
 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}

C:\work>java select CA
AL,Alabama ,0.040000
AR,Arizona ,0.000000
AZ,Arizona ,0.055000

C:\work>

Transactions
Local transaction are controlled directly with the connection object. Methods
such as Connection.commit() and Connection.rollback() are used to resolved
a transaction.

By default, all the connections that are created by the Informix JDBC Driver
Connection object are in AutoCommit mode. Thus, every SQL statement sent to
the Informix database server is committed automatically. If control over the
transaction is required, you can turn off the AutoCommit mode using the
Connection.setAutoCommit() method.

When using Informix JDBC Driver in an XA environment (XA is a standard
specification for distributed transactions), the AutoCommit feature is always
disabled. The transaction manager is the only component that has control over
the transaction.
 Chapter 5. Working with the JDBC drivers 171

Example 5-15 demonstrates how to disable AutoCommit mode using the
setAutoCommit(false) method.

Example 5-15 A sample localtrans.java file

C:\work>cat localtrans.java
import java.sql.*;
import java.util.*;
import java.text.*;

public class localtrans{
 public static void main(String [] args) {

 Connection conn = null;
 Statement is = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn =
DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/stores_demo:INFOR
MIXSERVER=demo_on");

 conn.setAutoCommit(false);

 is = conn.createStatement();
 int rc = is.executeUpdate("DELETE FROM state WHERE code='UK'");
 System.out.format("Deleted %d rows\n",rc);

 System.out.format("Aborting transaction\n");
 conn.rollback();

 conn.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

C:\work>java localtrans
Deleted 1 rows
Aborting transaction

C:\work>
172 IBM Informix Developer’s Handbook

Run a user-defined routine
The CallableStatement object provides a way to run a user-defined routine
(UDR) using a standard method that is common to all the IBM database servers.

The results from the execution of a UDR is returned as a result set or as an OUT
parameter. Use the following SQL syntax to call a UDR using the
CallableStatement interface:

"{? = call function_name (?, ?,...)}";

The placeholders identify the IN, OUT, and INOUT parameters for the UDR.

The application can set and retrieve the value for the routine parameters using
the registerOutParameter() and getxxx() methods.

Example 5-16 shows a basic UDR that is defined with two OUT parameters.

Example 5-16 A state_tax SQL routine

CREATE FUNCTION state_tax(OUT vtax percent,
 vcode CHAR(2),
 OUT vsname CHAR(20))
 RETURNS BOOLEAN;
 SELECT sales_tax,upper(sname)
 INTO vtax, vsname FROM state
 WHERE code=vcode;

 RETURN 't';
END FUNCTION;

We use CallableStatement to invoke this UDR from a JDBC application.
Example 5-17 demonstrates how to set the IN and OUT for the UDR. The
BOOLEAN value is returned directly by the SQL function and retrieved using a
ResultSet object. To retrieve the OUT parameters, the example uses the
getDouble() and GetString() methods.

Example 5-17 A callable.java sample file

C:\work>cat callable.java
import java.sql.*;

public class callable {
 public static void main(String [] args) {

 Connection conn = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 Chapter 5. Working with the JDBC drivers 173

 conn =
DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/stores_demo:INFOR
MIXSERVER=demo_on;");

 CallableStatement cstmt = conn.prepareCall ("{? = call state_tax(?, ?,
?)}");

 cstmt.registerOutParameter(1, Types.DOUBLE);
 cstmt.registerOutParameter(3, Types.CHAR);
 cstmt.setString(2, "CA");

 ResultSet dbRes = cstmt.executeQuery();
 // Retrieve OUT parameters from the function
 while (dbRes.next())
 System.out.format("UDR returns = %s\n", dbRes.getBoolean(1));

 // Retrieve OUT parameters from the function
 System.out.format("OUT tax %s\n",cstmt.getDouble(1));
 System.out.format("OUT sname %s\n",cstmt.getString(3));

 dbRes.close();
 cstmt.close();
 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}
C:\work>java callable
UDR returns = true
OUT tax 0.0825
OUT sname CALIFORNIA
C:\work>

5.5 Informix additional features

This section demonstrates the use of the following additional IBM Informix
features:

� Batch inserts or updates and using ResultSet metadata
� BIGSERIAL data type
� Informix smart large objects
� Secure Socket Layer
174 IBM Informix Developer’s Handbook

5.5.1 Batch inserts or updates and using ResultSet metadata

In this section, we demonstrate the following concepts:

� Batch inserts

When performing multiple inserts (or updates) using a prepared statement, it
is more efficient to do all the inserts in bulk. The method adds all the inserts in
a batch and then runs the batch.

� Using ResultSet metadata

When you run a query from a Java program that generates a result set, there
is additional information available that is separate from the result set itself.
This additional information about the data is returned by the ResultSet
metadata. For example, you might use ResultSet metadata to obtain table
definition information from one database to another database. You can
dynamically obtain all the details about each column that returns data.

Example 5-18 shows the batch insert and how to obtain the column name and
column type from the ResultSet metadata. The schema for the gentemp table is
as follows:

CREATE TABLE gentemp (id INT, name VARCHAR(15) NOT NULL)

We use the con.prepareStatement() method to prepare the SQL INSERT
statement. Then, we execute the statement using the pstmt.addBatch() method,
which makes the INSERT statement a part of a batch operation. After adding 10
rows to the table, we execute the batch operation using the
pstmt.executeBatch() method.

The metadata information for the table is retrieved using the rs.getMetaData()
method.

Example 5-18 Listing for the IfxBatchDemo.java file

import java.sql.*;
import java.io.*;

public class IfxBatchDemo {
 public static void main(String args[]) throws SQLException, IOException,Exception {

 String IfxURL =
"jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on";
 Connection con = null;
 int cnt = 0;

 System.out.println("Start");
 Class.forName("com.informix.jdbc.IfxDriver");
 con = DriverManager.getConnection(IfxURL);
 Chapter 5. Working with the JDBC drivers 175

 con.setAutoCommit(false);

 Statement stmt = null;
 PreparedStatement pstmt = null;
 ResultSet rs = null;
 ResultSetMetaData rsmd = null;

 pstmt = con.prepareStatement("INSERT INTO gentemp (id,name) VALUES (?,?)");
 // Fill in 10 rows
 for (int i = 0; i < 10; i++) {
 pstmt.setInt(1, i + 1000);
 pstmt.setString(2, "String #" + i);
 pstmt.addBatch();
 }
 int[] rows = pstmt.executeBatch();
 System.out.println(" Inserted data. Rows = " + rows.length);
 con.commit();
 pstmt.close();

 pstmt = con.prepareStatement("SELECT * FROM gentemp");
 rs = pstmt.executeQuery();
 rsmd = rs.getMetaData();

 System.out.println(" " + "Col Names " + rsmd.getColumnName(1) + ","
 + rsmd.getColumnName(2));
 System.out.println(" " + "Col Types " + rsmd.getColumnTypeName(1)
 + "," + rsmd.getColumnTypeName(2));
 int row = 1;
 while (rs.next()) {
 System.out.println(" Row " + row + " = "
 + rs.getInt(rsmd.getColumnName(1)) + ","
 + rs.getString(rsmd.getColumnName(2)));
 row++;
 }

 pstmt.close();
 con.commit();
 con.close();
 }
}

176 IBM Informix Developer’s Handbook

5.5.2 BIGSERIAL data type

IBM Informix version 11.50 implements the ANSI standard SQL data type
BIGINT and the BIGSERIAL data types:

� BIGINT is mapped to the JDBC standard BIGINT data type. It can be used
from a Java application as any other Informix data type.

� BIGSERIAL (similar to SERIAL and SERIAL8) does not have an obvious
mapping to any JDBC data type. Thus, the application must use
Informix-specific JDBC methods to retrieve the value of these columns.

The methods to access Informix serial data types are included in the Informix
JDBC implementation of the JAVA java.sql.Statement interface, IfxStatement.
You can use the getSerial(), getSerial8(), and getBigSerial() methods to
retrieve the last value that was inserted on a serial column.

Example 5-19 shows how to retrieve a BIGSERIAL value using the
IfxStatement.getBigSerial() method. The example uses the following schema
for the table:

CREATE TABLE tempbs(id BIGSERIAL, name CHAR(10));

Example 5-19 The bigserial.java sample

import java.sql.*;
import com.informix.jdbc.*;

public class bigserial {
 public static void main(String [] args) {

 Connection conn = null;
 ResultSet dbRes = null;
 long insertedserial = 0;
 String
url="jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;";

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn = DriverManager.getConnection(url);

 IfxStatement stmt= (IfxStatement) conn.createStatement();
 stmt.executeUpdate("INSERT INTO tempbs VALUES (0,'test');");
 insertedserial =stmt.getBigSerial();
 System.out.println("Last serial: \t"+insertedserial);

 stmt.executeQuery("SELECT FIRST 1 * FROM tempbs ORDER BY rowid DESC");
 dbRes = stmt.getResultSet();

 while (dbRes.next()) {
 Chapter 5. Working with the JDBC drivers 177

 System.out.format("Last row: \t%d,",dbRes.getLong(1));
 System.out.format("%s\n",dbRes.getString(2));
 }

 dbRes.close();
 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}

Example 5-19 on page 177 inserts a row in the tempbs table and stores the last
BIGSERIAL value in the insertedSerial variable. Example 5-20 shows how to
compile the example and its output.

Example 5-20 The output of the bigserial.java file

C:\work>javac bigserial.java

C:\work>java bigserial
Last serial: 14
Last row: 14,test

C:\work>

5.5.3 Informix smart large objects

Smart large objects are a type of large object that Informix supports. Smart large
objects are stored logically in a table column but stored physically in a specific
type of dbspace called smart blob space.

The data that is stored in the table column is a structure that contains information
about the large object, such as special attributes or pointers to the location in the
smart blob space that contains the data. Informix has the following types of smart
large objects:

� A BLOB stores binary data.
� A CLOB stores character data.
178 IBM Informix Developer’s Handbook

You can manipulate smart large objects with the Informix JDBC Driver using the
following methods:

� Standard JDBC 3.0 API

Using standard JDBC methods such as getString(), setAsciiStream(), or
getBinaryStream() allows an application to handle smart lager objects as
standard Java data types.

� Informix smart-large-object extensions

If an application requires random access to the large data, it must use
Informix smart-large-object extensions. These extensions to the JDBC API
give the application greater control over the smart-large-object data in terms
of object properties, concurrency access, and logging.

The IfxSmartBlob interface implements most of the smart-large-object
extensions, methods such as IfxLoCreate(), IfxLoOpen(), IfxLoRead(), and
IfxLoWrite() can be used to access the smart large object structures and to
manipulate the data of the object.

For a complete description of all the Informix smart-large-objects extensions,
refer to the JDBC Driver Programmer’s Guide, which is available at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.
ibm.jdbc_pg.doc/sii-04data-36421.htm

Using the standard JDBC API
Working with smart large objects using the JDBC API does not require any
specific Java code. Example 5-21 demonstrates how to retrieve a CLOB column
from the Informix database using the getString() method.

Example 5-21 The getclob.java sample

C:\work>cat getclob.java
import java.sql.*;
public class getclob {
 public static void main(String [] args) {
 Connection conn = null;
 ResultSet dbRes = null;
 Statement is = null;

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn = DriverManager.getConnection(
 "jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;");

Note: IBM Data Server Driver for JDBC does not support the Informix smart
large object extensions. Only the standard JDBC API is available to work with
smart large objects.
 Chapter 5. Working with the JDBC drivers 179

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.jdbc_pg.doc/sii-04data-36421.htm

 PreparedStatement pstmt=conn.prepareStatement("SELECT * FROM catalog WHERE
 catalog_num=?");
 pstmt.setString(1, args[0]);
 pstmt.executeQuery();
 dbRes = pstmt.getResultSet();
 dbRes.next();
 System.out.println("Advert description: "+dbRes.getString("advert_descr"));
 dbRes.close();
 conn.close();
 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
}
C:\work>javac getclob.java

C:\work>java getclob 10001
Advert description: Brown leather. Specify first baseman's or infield/outfield
style. Specify right- or left-handed.

C:\work>

Using the Informix extensions
The smart-large-object extensions allows a Java application to have direct
control over the large object structures and data pointers that are used to
describe the large object.

The following interfaces provide the methods that are needed to handle smart
large objects:

� IfxLobDescriptor stores the internal characteristics for a smart large object.
The application must create an IfxLobDescriptor object to insert a new large
object in the database.

� IfxLocator identifies a particular large object. An IfxLocator object can be
created or retrieved from the database to perform any I/O operations with the
large object.

� IfxSmartBlob represents a smart large object within the Informix JDBC
Driver. This object provides all the methods that are necessary to create,
open, read, and write to a large object.

� IfxloStat stores statistical information about a smart large object, such as
the size, last access time, last modified time, and last status change.

� IfxBblob and IfxCblob add extended functionality to the standard JDBC 3.0
BLOB and CLOB classes.
180 IBM Informix Developer’s Handbook

Example 5-22 demonstrates how to read data from a smart large object using the
IfxSmartBlob method. The code performs the following steps to select the CLOB
column advert_descr:

1. Stores the advert_descr column as an IfxCblob object using the getClob()
method.

2. Gets the IfxLocator from the IfxCblob object through the
cblob.getLocator() method.

3. Creates an IfxSmartBlob object and uses the IfxLocator to open the smart
large object in smb.IfxLoOpen().

4. Reads the first 200 bytes of the CLOB using the smb.IfxLoRead() method.

5. Closes the large object and releases the IfxLocator.

Example 5-22 The loext.java file

import java.sql.*;
import com.informix.jdbc.*;
public class loext{
 public static void main(String [] args) {
 Connection conn = null;
 byte[] buffer = new byte[200];

 try {
 Class.forName("com.informix.jdbc.IfxDriver");
 conn = DriverManager.getConnection(
 "jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;");

 PreparedStatement pstmt=conn.prepareStatement("SELECT * FROM catalog WHERE
 catalog_num=?");
 pstmt.setString(1, args[0]);
 pstmt.executeQuery();
 ResultSet dbRes = pstmt.getResultSet();
 dbRes.next();

 IfxCblob cblob = (IfxCblob) dbRes.getClob("advert_descr");
 IfxLocator loPtr = cblob.getLocator();
 IfxSmartBlob smb = new IfxSmartBlob(conn);
 int loFd = smb.IfxLoOpen(loPtr, smb.LO_RDONLY);
 int bytesReaded = smb.IfxLoRead(loFd, buffer, buffer.length);
 smb.IfxLoClose(loFd);
 smb.IfxLoRelease(loPtr);

 System.out.println("Advert description: "+new String(buffer).trim());
 dbRes.close();
 conn.close();
 }
 catch (Exception e) {
 Chapter 5. Working with the JDBC drivers 181

 System.err.println(e);
 }
 }
}

Example 5-23 shows how to compile the loext.java sample and the output of
this sample.

Example 5-23 The output of the loext.java file

C:\work>javac loext.java

C:\work>java loext 10001
Advert description: Brown leather. Specify first baseman's or infield/outfield
style. Specify right- or left-handed.

C:\work>

For more information regarding the use of smart large objects with Informix
JDBC Driver, refer to the JDBC Driver Programer’s Guide, which is available at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jdbc_pg.doc
/sii-04data-36421.htm#sii-04data-36421

5.5.4 Secure Socket Layer

In addition to the encrypted communications that are provided by the
Communication Support Module (CSM), the Informix database server supports
the use of Secure Socket Layer (SSL) communications for the encryption of the
packages between client and server.

Informix JDBC Driver supports only CSM encryptions. You must use IBM Data
Server Driver for JDBC to connect to an SSL-enabled Informix database server.

Before you can use SSL encryption with an Informix database, you must
configure both server and client systems.
182 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.jdbc_pg.doc/sii-04data-36421.htm#sii-04data-36421

Preparing the Informix server for SSL
To enable SSL on the Informix server, create an Informix alias using the drsocssl
protocol.

Example 5-24 enables SSL communications with an Informix server.

Example 5-24 SSL configuration on the Informix server

$gsk7capicmd -keydb -create -db kodiak.kdb -pw password -type cms -stash
$gsk7capicmd -cert -create -db kodiak.kdb -pw password -label testlabel -dn
"CN=bedfont.uk.ibm.com,O=ibm,C=UK" -size 1024 -default_cert yes
$gsk7capicmd -cert -extract -db kodiak.kdb -format ascii -label testlabel -pw
password -target testlabel.cert

$ pwd
/usr3/11.50/ssl
$ ls -a
. kodiak.crl kodiak.rdb testlabel.cert
.. kodiak.kdb kodiak.sth
$ onstat -c | grep ssl
DBSERVERALIASES kodiak_shm,kodiak_drda,kodiak_ssl
$ grep kodiak_ssl $INFORMIXSQLHOSTS
kodiak_ssl drsocssl kodiak 9191
$

For detailed information regarding the configuration of SSL with an Informix
server, refer to the Configuring a Server Instance for Secure Sockets Layer
Connections topic in the information center at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
sec.doc/ids_ssl_002.htm

Preparing client for SSL
To enable SSL encryption, both the client and server systems must use the same
certificated file. You can import a certified file into the client system using the
keytool utility, which is included with the Java SDK framework.

Example 5-25 demonstrates how to import the testlabel.cert certificate file
that was created in Example 5-24 on page 183 to enable a trusted relationship
between client and server. A keystore file is created to store the keys for the SSL
encrypted connection.

Example 5-25 SSL Client side configuration

C:\work>keytool -importcert -file testlabel.cert -keystore .keystore
Enter keystore password:
Re-enter new password:
Owner: CN=bedfont.uk.ibm.com, O=ibm, C=UK
 Chapter 5. Working with the JDBC drivers 183

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.sec.doc/ids_ssl_002.htm

Issuer: CN=bedfont.uk.ibm.com, O=ibm, C=UK
Serial number: -14b0e6b89751eab1
Valid from: Thu Jul 15 08:10:31 PDT 2010 until: Sat Jul 16 08:10:31 PDT 2011
Certificate fingerprints:
 MD5: 66:FA:CF:44:9F:F3:38:40:7B:9D:93:D6:D6:1C:DB:C5
 SHA1: CF:38:6F:CA:C9:A1:54:43:FC:64:AD:F6:DF:5F:CA:65:01:58:DE:DE
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

C:\work>dir .key* /b
.keystore

C:\work>

Using a Java client
A Java application can connect to the SSL Informix server by performing the
following operations:

� Set the javax.net.ssl.truststore system property to point to the created
keystore (in our example, C:\work\.keystore).

� Set the javax.net.ssl.trustStorePassword System property to the
password that is used for the certificate.

� Get a data source object.

� Set the port number to the SSL port, 9191.

� Set the data source property setSslConnection to true.

Example 5-26 shows basic Java code that connects to an SSL Informix server.

Example 5-26 Listing conssl.java

import java.sql.*;
import javax.sql.*;
import java.io.*;
import java.util.*;
import com.ibm.db2.jcc.*;

public class conssl {
 public static void main(String args[]) throws SQLException, IOException,
 Exception {
 System.setProperty ("javax.net.ssl.trustStore","c:/work/.keystore");
 System.setProperty ("javax.net.ssl.trustStorePassword","password");
 DB2ConnectionPoolDataSource ds = new DB2ConnectionPoolDataSource();

 ds.setUser("informix");
184 IBM Informix Developer’s Handbook

 ds.setPassword("password");
 ds.setServerName("kodiak");
 ds.setDatabaseName("stores_demo");
 ds.setPortNumber(9191);
 ds.setDriverType(4);
 ds.setSslConnection(true); // SSL

 PooledConnection poolconn = ds.getPooledConnection();
 Connection con = poolconn.getConnection();

 DatabaseMetaData md = con.getMetaData();

 System.out.println("Driver name: " + md.getDriverName());
 System.out.println("Connected to "+ md.getDatabaseProductName());
 System.out.println("Database product version: " +
 md.getDatabaseProductVersion());
 con.close();
 }
}

After a successful connection, the code produces metadata information such as
the driver name and database version. Example 5-27 shows the output.

Example 5-27 Output of conssl.java

C:\work>javac conssl.java

C:\work>java conssl
Driver name: IBM DB2 JDBC Universal Driver Architecture
Connected to IDS/UNIX32
Database product version: IFX11500

C:\work>

5.6 Typical errors

Common issues in Java applications for Informix include errors due to an
application development environment without proper configuration and SQL
syntax errors. In this section, we discuss these typical errors.
 Chapter 5. Working with the JDBC drivers 185

5.6.1 Class not found errors

The following code shows a class not found error message:

C:\RedBook>java IfxSimpleConnection
Exception in thread "main" java.lang.NoClassDefFoundError:
IfxSimpleConnection
Caused by: java.lang.ClassNotFoundException: IfxSimpleConnection
...

This type of error is usually from either failing to load the JDBC driver or failing to
load the application class because the environment is not configured properly.

To resolve this problem:

� Make sure that you have the JDBC driver .jar files in your CLASSPATH.

� Make sure that you have a “.” (dot) to include your current directory in the
CLASSPATH.

5.6.2 Connectivity errors

When an application fails to connect to the server, you see an error message that
is similar to the following message:

Exception in thread "main" java.sql.SQLException:
com.informix.asf.IfxASFException: Attempt to connect to database server
(demo_on) failed.
at com.informix.jdbc.IfxSqliConnect.<init>(IfxSqliConnect.java:1319)
...

To resolve this problem:

� Verify that the server is running and that the ports are configured correctly on
the server.

� Check the port number specified in the application. Remember, Informix
JDBC Driver connects to an SQLI port, and IBM Data Server driver connects
to a DRDA port.

� Verify that there is no firewall between the client and server. Use Telnet to
connect from the client to the server.
186 IBM Informix Developer’s Handbook

5.6.3 Syntax errors

The exception with SQLCODE -201 is a syntax error in an SQL statement that
you are trying to run. Other than examining the SQL manually, it can be helpful to
know the location of the SQL about which the server is complaining by obtaining
the SQL statement offset as follows:

try {
 stmt.execute(SQL);
}
catch(Exception e) {
 System.out.println ("Error Offset :"+((IfmxConnection
conn).getSQLStatementOffset());
 System.out.println(e.getMessage());
}

5.7 Tracing

Tracing the communication with the Informix database server might be required
for further diagnostics. The method that you use to enable tracing depends on
the Informix JDBC Driver that you are using.

5.7.1 IBM Informix JDBC Driver

Informix JDBC uses the Informix SQLI protocol for the communication with the
database server. A trace file with all the SQLI messages can be generated by
enabling the SQLITRACE feature within the JDBC driver.

Depending on the method used for the connection, the SQLIDEBUG can be
activated using a connection string keyword or a DataSource method:

� Set trace for Informix JDBC Driver using DriverManager

DriverManager.getConnection("jdbc:informix-sqli://kodiak:9088/sysmaster:INF
ORMIXSERVER=demo_on;user=;password=;SQLIDEBUG=/tmp/jdbctrace");

� Set trace for Informix JDBC Driver using a DataSource object

IfxDataSource ifxds = new IfxDataSource();
ifxds.setIfxSQLIDEBUG("c:/temp/sqli.trc");

You can run the trace through the sqliprint utility to render it to text form.
 Chapter 5. Working with the JDBC drivers 187

5.7.2 IBM Data Server Driver for JDBC

IBM Data Server Driver for JDBC uses DRDA as the network protocol and
produces a DRDA trace, which is a straight text output trace that can be
examined directly.

You can enable DRDA trace with the JDBC using the following methods:

� Set trace for IBM Data Server Driver using DriverManager

DriverManager.getConnection("jdbc:ids://kodiak:9089/sysmaster:user=;passwor
d=;traceFile=/jcc.trc;TraceLevel=TRACE_ALL;");

� Set trace for IBM Data Server Driver using a DataSource object

DB2SimpleDataSource ds = new DB2SimpleDataSource();
ds.setTraceFile("/jcc.trc");
ds.setTraceLevel(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);
ds.setTraceFileAppend(false);

Both SQLIDEBUG and DRDADEBUG traces can be activated at the server side
rather than on the client system using the Informix onmode utility that is included
with the Informix database server. You can find more information about both
traces in “Tracing” on page 117.
188 IBM Informix Developer’s Handbook

Chapter 6. IBM Informix with Hibernate

This chapter describes how to use the HIbernate Java package with an IBM
Informix database.

It includes the following topics:

� Hibernate for Java
� Setup and configuration
� Using Hibernate with an Informix database

6

© Copyright IBM Corp. 2010. All rights reserved. 189

6.1 Hibernate for Java

This section describes the concepts of Hibernate and the Java Persistence API
(JPA) programming model.

6.1.1 Overview of Hibernate

Hibernate is an open source Java object-relational mapping (ORM) and
persistence framework that allows you to map Plain Old Java Objects (POJO) to
relational database tables using XML configuration files. Hibernate also provides
a data query language, Hibernate Query Language (HQL), and retrieval facilities
that help reduce development time spent on manual data handling in JDBC calls
or SQL statements.

Persistence data refers to any data that must be stored in the database and that
must exist after the application has stopped running. Hibernate provides a way to
persist the typical relational data as well as Java objects that the application
uses.

A relational database stores the information in a tabular way with tables and
columns. A relational database ensures the integrity of the data using SQL
objects such as constraints and referential integrity.

An object-orientated programming (OOP) language, such as Java or C++, does
not have the same data representation as relational databases. The data is
represented by objects with attributes and methods. The relationship between
these objects is implemented with concepts such as inheritance or polymorphism
that do not exist in a relational database.

ORM technologies such as Hibernate try to solve the limitations of
object-orientated languages when using relational databases. ORM allows
developers to focus on the business logic of the application, without the need for
dealing with the data access layer. A developer needs to load only the customer
object and does not need to care about how the information for that particular
customer is stored in the database. ORM solutions produce more robust and
portable code, which means faster development time.

For more information about Hibernate, refer to:

http://docs.jboss.org/hibernate/stable/core/reference/en/html/
190 IBM Informix Developer’s Handbook

http://docs.jboss.org/hibernate/stable/core/reference/en/html/

6.1.2 Hibernate concepts

The Hibernate framework includes the following basic concepts:

� Persistence, in Hibernate terms, refers to the concept of storing the state of a
Java object in the database so that it can be restored later.

� Mapping is the process to map SQL tables to Java objects. Mapping is
accomplished using XML mapping files or using Java annotations (metadata
that is added to the application source) in the Java code.

� Object processing refers to the use of the mapped objects from the
application code. How to save and load the state of an Java object using the
Hibernate API or the specific Hibernate Query Language (HQL).

In a simplified words, Hibernate for Java is a set of Java APIs that allows you to
store and retrieve the state of Java objects into a database using a JDBC driver.

Figure 6-1 illustrates the typical components of a Hibernate application.

Figure 6-1 Hibernate components
 Chapter 6. IBM Informix with Hibernate 191

A Hibernate application includes the following components (as shown in
Figure 6-1):

� Application represents the Java application.

� Java object is the object that the application wants to persist (keep in the
database).

� Hibernate properties is the configuration file for the Hibernate framework,
named hibernate.cfg.xml, that contains information such as the connection
details for the database server or the SQL dialect to use.

� XML Mapping is an XML file that contains the mappings between Java
objects and database objects.

� JDBC is the JDBC driver that is used for the database connection. You can
use both IBM Informix JDBC Driver and IBM Data Server Driver for JDBC with
Hibernate.

� Informix database is the IBM Informix database server.

In addition to the ORM, Hibernate also provides connection management and a
transaction management services to be used with a Java application. We do not
discuss these topics in this section. For information regarding the use and
configuration of the connection and transaction management services, refer to:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/transactions.html

6.2 Setup and configuration

This section describes the installation and configuration of Hibernate to be used
with an IBM Informix database.

6.2.1 Installation

Hibernate is an open source project that you can download from:

http://sourceforge.net/projects/hibernate/files

The latest version of Hibernate API is V3.5.3, which fully implements the JPA 2.0.
The compressed package name is
hibernate-distribution-3.5.3-Final-dist.zip.
192 IBM Informix Developer’s Handbook

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/transactions.html
http://sourceforge.net/projects/hibernate/files

Example 6-1 shows the contents of the Hibernate compressed package.

Example 6-1 Hibernate distribution content

changelog.txt
 documentation
 javadocs
 manual
 hibernate-testing.jar
 hibernate3.jar
 hibernate_logo.gif
 lgpl.txt
 lib
 bytecode
 jpa
 hibernate-jpa-2.0-api-1.0.0.Final.jar
 optional
 c3p0
 ehcache
 infinispan
 jbosscache
 oscache
 proxool
 swarmcache
 required
 antlr-2.7.6.jar
 commons-collections-3.1.jar
 dom4j-1.6.1.jar
 javassist-3.9.0.GA.jar
 jta-1.1.jar
 slf4j-api-1.5.8.jar
 project

The package contains most of the Java libraries that are required to run a
Hibernate application, including the Hibernate documentation and the source
code project files for the Hibernate libraries. Table 6-1 describes the Java
libraries that are included.

Table 6-1 Included Java libraries

File Description

hibernate3.jar Hibernate Core library for Relational Persistence

hibernate-jpa-2.0-api-1
.0.0.Final.jar

Hibernate definition of the Java Persistence 2.0 API

antlr-2.7.6.jar Framework for grammatical descriptions containing Java
 Chapter 6. IBM Informix with Hibernate 193

In addition to the libraries that are supplied by the Hibernate package, the .jar
packages contain the following libraries for the JDBC driver that must be included
in the CLASSPATH:

� ifxjdbc.jar: IBM Informix JDBC Driver
� db2jcc.jar: IBM Data Server Driver for JDBC

The Hibernate package is also available as a Maven 2 artifact. Maven is an open
source software project management that uses XML files based on the Project
Object Model (POM) to manage all the attributes and dependencies files of a
Java project. For more information about Maven, refer to the Apache Maven
Project documentation at:

http://maven.apache.org/what-is-maven.html

6.2.2 Configuration

In this section, we discuss the configuration settings that are required to develop
an Informix application with Hibernate.

commons-collections-3.1
.jar

Types that extend and augment the Java Collections
Framework

dom4j-1.6.1.jar XML framework for Java

javassist-3.9.0.GA.jar Java programming Assistant

jta-1.1.jar The javax.transaction package

slf4j-api-1.5.8.jar API for the Simple Logging Facade for Java (SLF4J)

Note: The slf4j-api-1.5.8.jar package does not contain the complete set
of libraries for the Simple Logging Facade for Java (SLF4J). You must use a
package that provides an implementation for SLF4J in conjunction with
Hibernate API.

Several implementations of SLF4J are available at:

http://www.slf4j.org/download.html

In our examples, we use slf4j-simple-1.6.1.jar and slf4j-nop-1.6.1.jar,
which provide simple-logging and discarded-logging.

File Description
194 IBM Informix Developer’s Handbook

http://maven.apache.org/what-is-maven.html
http://www.slf4j.org/download.html

CLASSPATH
CLASSPATH is an environment variable that tells the Java compiler and the Java
virtual machine (JVM) where to look for Java class files and Java libraries.

To use Hibernate with a Java program, you must include the core library, the
hibernate3.jar file, and all the libraries in the lib/required directory in the
application CLASSPATH. An implementation of the SLF4J logger and the JDBC
driver is also required for Hibernate to work.

Example 6-2 shows a UNIX script that creates the CLASSPATH environment
variable. We use slf4j-nop-1.6.1.jar with discarded-logging and the Informix
JDBC Driver ifxjdbc.jar file for our examples.

Example 6-2 Hibernate CLASSPATH script

export CLASSPATH=$CLASSPATH:.
export CLASSPATH=$CLASSPATH:/work/lib/commons-collections-3.1.jar
export CLASSPATH=$CLASSPATH:/work/lib/dom4j-1.6.1.jar
export CLASSPATH=$CLASSPATH:/work/lib/hibernate-jpa-2.0-api-1.0.0.Final.jar
export CLASSPATH=$CLASSPATH:/work/lib/hibernate3.jar
export CLASSPATH=$CLASSPATH:/work/lib/javassist-3.9.0.GA.jar
export CLASSPATH=$CLASSPATH:/work/lib/jta-1.1.jar
export CLASSPATH=$CLASSPATH:/work/lib/slf4j-api-1.6.1.jar
export CLASSPATH=$CLASSPATH:/work/lib/antlr-2.7.6.jar

export CLASSPATH=$CLASSPATH:/work/lib/slf4j-nop-1.6.1.jar
export CLASSPATH=$CLASSPATH:/work/lib/ifxjdbc.jar

Hibernate configuration file
Hibernate provides the following files to specify configuration parameters:

� hibernate.properties: A standard Java properties text file
� hibernate.cfg.xml: An XML formatted file

Both files contain the same configuration details for the Hibernate service. If both
files exist, the XML configuration file overrides the settings in the properties file.

The configuration file (hibernate.propertieshibernate.cfg.xml) contains the
information that Hibernate needs to connect to the database server. Details such
as name of the JDBC driver class, ConnectionString, and authentication details
are kept in this file.

The Hibernate libraries require the configuration file (hibernate.properties or
hibernate.cfg.xml) to be located in the root directory of the CLASSPATH.
 Chapter 6. IBM Informix with Hibernate 195

Example 6-3 shows a hibernate.cfg.xml file using the Informix JDBC Driver.

Example 6-3 A hibernate.cfg.xml sample

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
 <hibernate-configuration>
 <session-factory name="Informix_Session">
<!-- properties -->
 <property name="connection.driver_class">
 com.informix.jdbc.IfxDriver
 </property>
 <property name="connection.url">
 jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;
 </property>
 <property name="hibernate.connection.username">
 informix
 </property>
 <property name="hibernate.connection.password">
 password
 </property>
 <property name="dialect">
 org.hibernate.dialect.InformixDialect
 </property>

 <property name="hibernate.show_sql">false</property>
 <property name="hbm2ddl.auto">update</property>
<!-- mapping files -->
 <mapping resource="State.hbm.xml"/>

 </session-factory>
</hibernate-configuration>

In addition to the JDBC information, the configuration file also contains
configuration details for the Hibernate service.

Use the dialect property to specify the SQL dialect for the database server. A
Hibernate dialect is a Java class that contains specific details regarding the SQL
syntax that is needed to communicate with a particular database.

When using the IBM Informix JDBC Driver with Hibernate, set the dialect to
orb.hibernate.dialect.InformixDialect. The dialect for the IBM Data Server
Driver for JDBC is org.hibernate.dialect.DB2Dialect.

These classes are included in the hibernate3.jar package and contain a basic,
non-optimized implementation of the Informix dialect.
196 IBM Informix Developer’s Handbook

The XML configuration file allows the inclusion of XML mapping files. Use the
mapping resource property to specify the XML file that contains the mapping
between the SQL table and the Java object.

Example 6-3 on page 196 includes the State.hbm.xml mapping file as part of the
hibernate configuration, as shown in the following line:

<mapping resource="State.hbm.xml"/>

Properties, such as hibernate.show_sql or hbm2ddl.auto, control the behavior
of the Hibernate service. Use the hibernate.show_sql property to dump all the
SQL statements to the console, which might be useful for debugging purposes.
Set the hbm2ddl.auto property to update to specify that the schema for the SQL
table is updated automatically if it differs from the definition in the XML definition.

For more information regarding all the supported properties for the Hibernate
configuration files, refer to:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/session-configuration
.html

XML mapping file
You can use the XML mapping file to specify the relations between a Java object
and an SQL database object. These mapping definitions are used to provide
Hibernate with the information that is needed to persist the Java objects into the
relational database. They also provide support features, such as creating the
database schema and relationship between the objects.

XML mapping files are not required when using Java annotations. The mapping
information is added using annotations in the Java source code.

Example 6-4 shows a basic XML file used to map the States table to the State
Java object.

Example 6-4 The State.hbm.xml file

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class

Note: You can find a patch that adds Informix SQL optimizations to the original
Hibernate dialect for Informix databases at:

http://www.iiug.org/opensource/files/hibernate-3.3.2_informix.tar.gz
 Chapter 6. IBM Informix with Hibernate 197

http://www.iiug.org/opensource/files/hibernate-3.3.2_informix.tar.gz
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/session-configuration.html

 name="State"
 table="States">
 <id
 name="id"
 column="id">
 <generator class="increment"/>
 </id>

 <property
 name="code"
 column="code"/>
 <property
 name="sname"
 column="sname"/>
</class>
</hibernate-mapping>

The definition includes information, such as the table name and column to be
used as identifier (ID), and specific attributes for the elements, such as the
generator class that defines a column as an identifier that is generated
automatically by the Java libraries. These details are used by the Hibernate
libraries to generate SQL statements automatically, including Data Definition
Language (DDL) and Data Manipulation Language (DML).

For a complete list of all the attributes that are available in an XML mapping file,
refer to:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html#mapping
-declaration

6.3 Using Hibernate with an Informix database

In this section, we demonstrate how to perform basic operations using the
Hibernate API with an IBM Informix database server.

6.3.1 Components of a Hibernate application

To develop a Hibernate application, you need to complete the following tasks:

� Create the Java objects.

� Create the XML Mapping files for the Java objects.

� Create the configuration file for the Hibernate framework.
198 IBM Informix Developer’s Handbook

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html#mapping-declaration

� Create the HibernateUtil helper class that provides access to the Hibernate
session.

� Create the application that will use the Java persistence objects.

Java object
Hibernate supports the use of Plain Old Java Objects (POJO) for the definition of
a persistence object. Thus, there is a special requirement when writing the Java
class that represents the object.

Example 6-5 shows the contents of the State.java file that is used to define the
State object. The State Java object is created as any normal Java object. The
object has three properties (id, code, and sname) and the usual methods to set
and get those properties, such as setcode() or setsname(). The id attribute is
used to uniquely identify the Java persistence object.

Example 6-5 The State.java file

public class State {
 private Long id;
 private String code;
 private String sname;

 public State() {}
 public State(String text, String text2) {
 this.code = text;
 this.sname = text2;
 }
 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }
 public String getcode() {
 return code;
 }
 public void setcode(String text) {
 this.code = text;
 }
 public String getsname() {
 return sname;
 }
 public void setsname(String text) {
 this.sname = text;
 }
}

 Chapter 6. IBM Informix with Hibernate 199

Example 6-6 shows the CLASSPATH variable used in the environment and how
to compile the State.java source code.

Example 6-6 Compile line for State.java

C:\work>set classpath
CLASSPATH=C:\work\lib\commons-collections-3.1.jar;C:\work\lib\dom4j-1.6.1.jar;C
:\work\lib\hibernate-jpa-2.0-api-1.0.0.Final.jar;C:\work\lib\hibernate3.jar;C:\
work\lib\ifxjdbc.jar;C:\work\lib\javassist-3.9.0.GA.jar;C:\work\lib\jta-1.1.jar
;C:\work\lib\slf4j-api-1.6.1.jar;C:\work\lib\slf4j-nop-1.6.1.jar;C:\work\lib\an
tlr-2.7.6.jar;.

C:\work>javac State.java
C:\work>

XML mapping file
An XML mapping file is required to link the Java object with an Informix database
object. The States table keeps all the instances of the Java State object.

The common convention for the name of the XML mapping file is
objectname_hbm.xml.

Example 6-7 shows the contents of the State_hbm.xml file.

Example 6-7 The State_hbm.xml file

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class
 name="State"
 table="States">
 <id
 name="id"
 column="id">
 <generator class="increment"/>
 </id>

 <property
 name="code"
 column="code"/>
 <property
 name="sname"
 column="sname"/>

 </class>
</hibernate-mapping>
200 IBM Informix Developer’s Handbook

The name of the class is State. It is mapped to the Informix SQL table States.
The State class contains two types of elements:

� <id>

Defines the mapping from that property to the primary key column. It usually
contains the generator element that is used to generate unique identifiers for
the ID property.

The generator class supports different methods of generating identifiers.
Increment is the most basic method, and sequence allows to use an SQL
sequence to obtain the identifier value. For a list of all the methods
implemented in the generator interface, refer to:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html#map
ping-declaration-id

� <property name>

Defines a property for the object, including the name of the property and the
name of the mapped database table column.

The elements of the XML mapping file can have additional attributes to define
specific characteristics of the columns it maps. You can use attributes such as
type and not-null to specify the data type and the nullability of a column.

Hibernate configuration file
The Hibernate configuration file must reside in the root directory of the
CLASSPATH. It contains configuration values for the Hibernate service and
connection details for the database server.

Example 6-8 shows the contents of the hibernate.cfg.xml file that we used in
our sample. The connection details correspond to the IBM Informix JDBC Driver.

Example 6-8 The hibernate.cfg.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
 <hibernate-configuration>
 <session-factory name="Informix_Session">
<!-- properties -->
 <property name="connection.driver_class">
 com.informix.jdbc.IfxDriver
 </property>
 <property name="connection.url">
 jdbc:informix-sqli://kodiak:9088/stores_demo:INFORMIXSERVER=demo_on;
 </property>
 <property name="hibernate.connection.username">
 Chapter 6. IBM Informix with Hibernate 201

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html#mapping-declaration-id

 informix
 </property>
 <property name="hibernate.connection.password">
 password
 </property>
 <property name="dialect">
 org.hibernate.dialect.InformixDialect
 </property>

 <property name="hibernate.show_sql">false</property>
 <property name="hbm2ddl.auto">update</property>
<!-- mapping files -->
 <mapping resource="State.hbm.xml"/>

 </session-factory>

Example 6-9 shows the attributes that are required for an IBM Data Server Driver
for JDBC connection. The configuration file includes the State.hbm.xml XML
mapping for the State object.

Example 6-9 IBM Data Server Driver hibernate.cfg.xml file

 <property name="dialect">
org.hibernate.dialect.DB2Dialect
 </property>
 <property name="connection.driver_class">
com.ibm.db2.jcc.DB2Driver
 </property>
 <property name="connection.url">
jdbc:ids://kodiak:9089/stores_demo;
 </property>

HibernateUtil helper class
The HibernateUtil class is used to interact with the Hibernate service. It
performs the operations related to the Hibernate SessionFactory classes that
provide a convenient way for the application to access the Hibernate session.

The Java file that contains the HibernateUtil helper class is
HibernateUtil.java. Example 6-10 shows a typical helper class.

Example 6-10 The HiberanteUtil.java file

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {
 private static final SessionFactory sessionFactory;
202 IBM Informix Developer’s Handbook

 static {
 try {
// Creates the SessionFactory from hibernate.cfg.xml
 sessionFactory = new Configuration().configure().buildSessionFactory();
 }
 catch (Throwable ex) {
 System.err.println("SessionFactory creation failed." + ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }

 public static void shutdown() {
// Close caches and connection pools
 getSessionFactory().close();
 }
}

This class creates a Hibernate session using the parameters that are specified in
the Hibernate configuration file. Create the class by compiling the
HibernateUtil.java Java file as follows:

javac HibernateUtil.java

Java application
The only task that is required by a Java application to use the Hibernate
persistence object is to create a Hibernate Session instance using the
HibernateUtil helper class. After that, the application can create persist objects
in the same manner that it does for any other Java object.

6.3.2 Working with a Hibernate object

Developers must follow an object-orientated methodology when writing
applications using the Hibernate API. With Hibernate, the data is represented by
the status and properties of an object, not by tables and rows in a relational
database.

Storing
When a persistent object is created and saved or stored, an insert operation is
performed on the database.
 Chapter 6. IBM Informix with Hibernate 203

Example 6-11 shows basic Java code that creates a new State object using the
parameters that are supplied in the command line. The example creates a
Hibernate Session object using the helper class and then creates a new State
object called myState. The myState.setcode() and myState.setsname() methods
are used to stored the values that are passed from the command line.

Example 6-11 The Create.java code

import java.util.*;
import org.hibernate.*;
import javax.persistence.*;

public class create {
 public static void main(String[] args) {

 Session Session = HibernateUtil.getSessionFactory().openSession();
 Transaction Transaction = Session.beginTransaction();

 State myState = new State();
 myState.setcode(args[0]);
 myState.setsname(args[1]);
 Long stateId = (Long) Session.save(myState);
 System.out.println("Stated added: "+myState.getcode()+", "
 +myState.getsname());

 Transaction.commit();
 Session.close();
// Shutting down the application
 HibernateUtil.shutdown();
 }
}

Example 6-12 shows the compile line and the output of the create.java sample.

Example 6-12 Compiling the create.java sample and the output

C:\work>javac create.java

C:\work>java create AZ Arizona
Stated added: AZ, Arizona

C:\work>

The hbm2ddl.auto Hibernate property is set to update in the configuration file,
which means that if the table does not exist in the database, it is created
automatically using the table model that is defined in the XML mapping file.
204 IBM Informix Developer’s Handbook

Example 6-13 shows the schema of the created States table and the new row
that is added to the table.

Example 6-13 States table schema

D:\Infx\ids1150>dbaccess stores_demo -

Database selected.

> INFO COLUMNS FOR states;

Column name Type Nulls

id int8 no
code varchar(255) yes
sname varchar(255) yes
> SELECT * FROM states;

id 1
code AZ
sname Arizona

1 row(s) retrieved.

>

The Java object is made persistent, thus saving the state of the object in the
database, using the Session.save() Hibernate method and committing the unit
of work with Transaction.commit().

Loading
To retrieve a persistent object from the database server, the application must
create a Hibernate session and load the state of the object into the current
session.

The process of loading a persistence object can be achieved using several
methods:

� Use Session.load() and Session.get() to retrieve the state of an object from
the database using the object identifier as reference. For example, to load the
State object with ID equal to 1, the following code is needed:

State mystateobj = (State) Session.load(State.class,1);
 Chapter 6. IBM Informix with Hibernate 205

The only difference between the load() and get() methods is the returned
value. If the object is not found, get() returns a null and load() throws an
exception.

� Use an SQL or HQL query. HQL is similar to SQL but is optimized for an
object-orientated environment. You can use methods, such as
Session.createQuery() and Session.createCiteria(), to load the state of
one or multiple objects from the database server. The following command
loads all State objects into a list:

List<State> states = session.createQuery("from state").list();

Example 6-14 demonstrates how to load a single object from the database using
the Session.load() method.

Example 6-14 The load.java sample

import java.util.List;
import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.hibernate.criterion.*;

public class load {
 public static void main(String[] args) {

 Long stateId = null;

 Session Session = HibernateUtil.getSessionFactory().openSession();
 Transaction Transaction = Session.beginTransaction();

 stateId=Long.parseLong(args[0]);
 State mystate = (State) Session.load(State.class,stateId);

 System.out.println(mystate.getcode() +", " +
 mystate.getsname());

 Transaction.commit();
 Session.close();

 }
}

206 IBM Informix Developer’s Handbook

Example 6-15 shows how to compile and run the previous example. The
application loads the State object identified by the id value passed through the
command line.

Example 6-15 Output of the load.java sample

C:\work>javac load.java

C:\work>java load 1
AZ, Arizona

C:\work>java load 2
CA, California

C:\work>

The application can use an HQL query to load all the objects, or entities, of a
particular type. All the State objects are kept in the States table. Example 6-16
shows how to retrieve a list of the State entities.

Example 6-16 The list.java sample

C:\work>cat list.java
import java.util.*;
import org.hibernate.*;
import javax.persistence.*;

public class list {
 public static void main(String[] args) {

 Session newSession = HibernateUtil.getSessionFactory().openSession();
 Transaction newTransaction = newSession.beginTransaction();
 List states = newSession.createQuery("from State order by id asc").list();

 for (Iterator iter = states.iterator();
 iter.hasNext();) {
 State state = (State) iter.next();
 System.out.println(state.getId() +", "+ state.getcode()
 +", " + state.getsname());
 }
 newTransaction.commit();
 newSession.close();

 HibernateUtil.shutdown();
 }
}
C:\work>javac list.java

C:\work>java list
 Chapter 6. IBM Informix with Hibernate 207

1, AZ, Arizona
2, CA, California

C:\work>

Updating
Updating an persistent object is the process of changing the state of the object.
No specific operation is required for this task. The application must load the
object, change the object properties, and save it.

Example 6-17 demonstrates how to update individual objects. It uses the
parameters from the command line to change the code and sname properties of a
State object.

Example 6-17 The update.java sample

C:\work>cat update.java

import java.util.List;
import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Transaction;

public class update {
 public static void main(String[] args) {

 Long stateId = null;

 Session Session = HibernateUtil.getSessionFactory().openSession();
 Transaction Transaction = Session.beginTransaction();

 stateId=Long.parseLong(args[0]);
 State mystate = (State) Session.load(State.class,stateId);

 mystate.setcode(args[1]);
 mystate.setsname(args[2]);

 Session.save(mystate);
 System.out.println("new values: "+ mystate.getcode()+", "+
 mystate.getsname());

 Transaction.commit();
 Session.close();

 }
}
C:\work>javac update.java
208 IBM Informix Developer’s Handbook

C:\work>java update 1 AZ ARIZONA
new values: AZ, ARIZONA

C:\work>

Criteria
Criteria queries are a feature of HQL that allow the building of complex queries
using an object-orientated API.

Example 6-18 shows how to update a president object using an HQL criteria to
retrieve the object from the database. The HQL criteria is created using the name
of the class for the object that you want to select, State.class. An HQL
Restriction, Restriction.eq("code", args[0]), is used to specify a filter for the
criteria. This restriction specifies that the query returns the objects with a specific
code value.

Example 6-18 The update2.java sample

import java.util.*;
import org.hibernate.*;
import javax.persistence.*;
import org.hibernate.criterion.*;

public class update2 {
 public static void main(String[] args) {

 Session Session = HibernateUtil.getSessionFactory().openSession();
 Transaction Transaction = Session.beginTransaction();

 Criteria crit = Session.createCriteria(State.class);
 crit.add(Restrictions.eq("code", args[0]));
 List states = crit.list();

 for (Iterator iter = states.iterator(); iter.hasNext();) {
 State mystate = (State) iter.next();
 mystate.setsname(args[1]);
 Session.flush();
 Long msgId = (Long) Session.save(mystate);
 System.out.println("new values: "+ mystate.getcode()+", "+
 mystate.getsname());
 }

 Transaction.commit();
 Session.close();

 HibernateUtil.shutdown();
 }
}

 Chapter 6. IBM Informix with Hibernate 209

Example 6-19 shows the output of the example.

Example 6-19 The update2.java output

C:\work>javac update2.java

C:\work>java update2 AZ Arizona
new values: AZ, Arizona

C:\work>

Deleting
In the Hibernate framework, deleting a persistence object means to make the
object transient. A transient object is a typical Java object, but the state of the
object is not stored anywhere. Thus, the object exists only during the life of the
application.

An object can be deleted using the Session.delete() method. Example 6-20
demonstrates how to use the Session.delete() method.

Example 6-20 The delete.java sample

C:\work>cat delete.java
import java.util.List;
import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Transaction;

public class delete {
 public static void main(String[] args) {

 Long stateId = null;

 Session Session = HibernateUtil.getSessionFactory().openSession();
 Transaction Transaction = Session.beginTransaction();

 stateId=Long.parseLong(args[0]);
 State mystate = (State) Session.load(State.class,stateId);

 Session.delete(mystate);
 System.out.println("Object deleted");

 Transaction.commit();
 Session.close();

 }
}
C:\work>javac delete.java
210 IBM Informix Developer’s Handbook

C:\work>java delete 2
Object deleted

C:\work>java list
1, AZ, Arizona

C:\work>

One of the main features of using Hibernate is that it abstracts the JDBC layer
from the application. Thus, applications written using the Hibernate API are not
tied to a specific JDBC driver or relational database server.

You can run all the examples that we present in this section using any of the two
Informix JDBC drivers that are available, IBM Informix JDBC Driver or IBM Data
Server Driver for JDBC. Refer to the “Hibernate configuration file” on page 195
for information regarding how to switch between JDBC drivers.

For more information about how to develop using the Hibernate API, refer to:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/objectstate.html

6.3.3 Using annotations

Java annotations is a feature added into the Java 5 Software Development Kit
(SDK) that allows the inclusion of special annotations within the Java source
code to express metadata relating to program objects.

Hibernate supports Java annotations through the use of the Hibernate
Annotations Extensions. These extensions allow you to include the definition of
specific Hibernate properties, such as configuration properties or object
mappings properties, directly into the Java code.

With annotations, there is no need for a specific XML mapping file to link the Java
objects with the database objects.

Example 6-21 shows the definition of the State object using Hibernate
annotations. Annotations, such as @Entity, @Table or @Column, define the
mapping information that is needed to persist the Java objects into the database.

Example 6-21 The state.java sample with annotations

import javax.persistence.*;

@Entity
@Table(name="States")
public class State {
 Chapter 6. IBM Informix with Hibernate 211

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/objectstate.html

 private Long id;
 private String code;
 private String sname;

 public State() {}
 public State(String text, String text2) {
 this.code = text;
 this.sname = text2;
 }
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name="id")
 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }
@Column(name="code", length=2, nullable=false)
 public String getcode() {
 return code;
 }
 public void setcode(String text) {
 this.code = text;
 }
@Column(name="sname", length=15, nullable=false)
 public String getsname() {
 return sname;
 }
 public void setsname(String text) {
 this.sname = text;
 }
}

Because all the information that is required to map the objects is specified as
annotations, you do not need to include a <mapping> section in the Hibernate
hibernate.cfg.xml configuration file.
212 IBM Informix Developer’s Handbook

When using annotations, the HibernateUtil helper class, HibernateUtil.java,
uses the AnnotationConfiguration() interface to retrieve the Hibernate
properties and the metadata definition from the object class. Example 6-22
shows the HibernateUtil.java file that is used to create a SessionFactory for
the State.class object.

Example 6-22 The HibernateUtil.java sample for annotations

import org.hibernate.SessionFactory;
import org.hibernate.cfg.AnnotationConfiguration;

public class HibernateUtil {

private static final SessionFactory sessionFactory;
 static {
 try {
// Create the SessionFactory from hibernate.cfg.xml

 sessionFactory = new AnnotationConfiguration()
 .configure()
 .addAnnotatedClass(State.class)
 .buildSessionFactory();

 } catch (Throwable ex) {
 System.err.println("Initial SessionFactory creation failed." + ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
 public static void shutdown() {
 getSessionFactory().close();
 }

}

You do not need to change the code for the Java applications that use the
persistence object. The process when using Hibernate annotations for
manipulating the objects is the same as when using the XML mapping files.

You can find a description of all the Hibernate annotation extensions at:

http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#en
tity-hibspec
 Chapter 6. IBM Informix with Hibernate 213

http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec

214 IBM Informix Developer’s Handbook

Chapter 7. Working with IBM Informix
OLE DB Provider

This chapter describes IBM Informix OLE DB Provider. It includes the following
topics:

� IBM Informix OLE DB Provider
� Setup and configuration
� Developing an OLE DB application
� Visual Basic, ADO.NET, and SQL Server
� Troubleshooting and tracing

7

© Copyright IBM Corp. 2010. All rights reserved. 215

7.1 IBM Informix OLE DB Provider

Informix OLE DB Provider is a Universal Data Access component that enables
IBM Informix Server access from OLE DB consumers.

Microsoft OLE DB is a specification for a set of interfaces that is designed to
expose data from a variety of sources (relational and non-relational). OLE DB
uses the Component Object Model (COM) to accomplish this.

You can use IBM Informix OLE DB Provider to enable client applications, such as
ActiveX Data Object (ADO) applications and web pages, to access data on an
IBM Informix database server.

Table 7-1 shows the name and COM class ID of the IBM Informix OLE DB
Provider.

Table 7-1 COM class ID

Table 7-2 lists the Informix database servers that support IBM Informix OLE DB
Provider.

Table 7-2 Supported databases

7.2 Setup and configuration

In this section, we discuss how to install and set up the OLE DB provider and
how to perform basic connectivity tests.

7.2.1 Installation and setup

IBM Informix OLE DB Provider is included only in the Windows version of
Informix Client Software Development Kit (Client SDK). The Informix OLE DB

Name DLL CLSID

ifxoledbc iifxoledbc.dll {A6D00422-FD6C-11D0-8043-00A0C90F1C59}

Database Server Versions

IBM Informix 10.0,11.10,11.50

IBM Informix Extended Parallel Server 8.50 and higher

IBM Informix Online 5.20 and higher
216 IBM Informix Developer’s Handbook

Provider is selected by default in the Client SDK installation. During the
installation process, the provider is registered automatically on the Windows
registry as a command component.

The default installation directory is the C:\Program
Files\IBM\Informix\Client-SDK directory. The INFORMIXDIR environment
variable should point to the directory where the product is installed. The provider
shared library, ifxoledbc.dll, is located in %INFORMIXDIR%\bin directory.

Because by default Informix OLE DB Provider is registered during Client SDK
installation, manual registration is usually not required. However, if needed, you
can register Informix OLE DB Provider manually using the Microsoft
regsvr32.exe tool using the following command:

regsvr32.exe %INFORMIXDIR%\bin\ifxoledbc.dll

After installation, you must run the coledbp.sql script on the database server
against the sysmaster database as user informix to add the tables and functions
that are required by Informix OLE DB Provider to work.

The coledbp.sql script is located in the %INFORMIXDIR%\etc directory. If you want
to remove the support functions and tables, use the doledbp.sql script that is
located in the same directory.

7.2.2 Verifying connectivity

Client SDK does not contain any specific tool to test Informix OLE DB Provider.

Internally, Informix OLE DB Provider uses the same Informix connection libraries
as ESQL/C or ODBC. You can test the basic connection details for your database
server using the iLogin utility that is included in the %INFORMIXDIR%\bin directory.

Testing using Visual Basic Scripting Edition
Visual Basic Scripting Edition (VBScript) is a scripting language that is included
as part of the Windows operating system. It provides access to ADO objects

Note: On a Windows x64 (64-bit) system, there are two versions of the
regsvr32.exe tool:

� The 32-bit version is located in C:\WINDOWS\SysWOW64
� The 64-bit version is located in C:\WINDOWS\System

Use the correct version when registering Informix OLE DB Provider.
Otherwise, the application will fail to load the shared library due to a
mismatched version.
 Chapter 7. Working with IBM Informix OLE DB Provider 217

through COM. You can use it to test whether the Informix OLE DB Provider is
configured properly.

A VBScript file is a text file with a .vbs extension that is loaded automatically and
executed by Visual Basic at run time.

Example 7-1 shows a simple VBScript that loads Informix OLE DB Provider and
selects a single row from the database.

Example 7-1 The connect.vbs script

' ---- Test_Ifx.vbs ----
On Error Resume Next

args = WScript.Arguments.Count
If args < 1 then
 WScript.Echo "usage: connect.vbs Connection_string"
 WScript.Echo " e.g.: connect.vbs ""Data Source=stores_demo@demo_on;User
ID=informix;Password=password;"""
 WScript.Quit
end If

set conn=createobject("ADODB.Connection")
conn.provider = "Ifxoledbc"
conn.connectionstring = WScript.Arguments.Item(0)
conn.open
If Err then
 WScript.Echo "Error!! "+conn.Errors(0).Description
Else
 WScript.Echo "Connected"
 conn.close
End If
' ---- Test_Ifx.vbs ----

Example 7-2 shows how run the connect.vbs script with a data source string as
the parameter to test the database connectivity.

Example 7-2 Output of the connect.vbs script

c:\work>connect.vbs
usage: connect.vbs Connection_string
 e.g.: connect.vbs "Data Source=stores_demo@demo_on;User
ID=informix;Password=password;"

c:\work>connect.vbs "Data Source=stores_demo@demo_on;User
ID=informix;Password=password;"
Connected
218 IBM Informix Developer’s Handbook

c:\work>connect.vbs "Data Source=stores_demo@demo_on;User
ID=informix;Password=invalid;"
Error!! EIX000: (-951) Incorrect password or user informix@dubito is not known
on the database server.

Rowset Viewer
You can also test Informix OLE DB Provider using the Rowset Viewer. The
Rowset Viewer is included with the Microsoft Data Access Components (MDAC)
2.8 Software Development Kit (SDK), which you can download from the following
location:

http://www.microsoft.com/downloads/details.aspx?FamilyID=6c050fe3-c795-4b7d-b03
7-185d0506396c

To test Informix OLE DB Provider using the Rowset Viewer tool, perform the
following steps:

1. Run the Rowset tool.

2. Select File Full Connect.

3. In the Full Connect dialog box, choose Ifxoledbc in the Provider field.

4. In the DataSource field, enter the database server name to which you want to
connect, for example stores_demo@demo_on.

5. Click OK.

You also can use Rowset Viewer to run SQL statements against the database
server. To execute an SQL statement, write the SQL text in the Rowset pane and
click .

7.3 Developing an OLE DB application

This section describes the interfaces that are implemented in Informix OLE DB
Provider and demonstrates how to perform basic database operations.

In this section, we discuss the following topics:

� Supported interfaces
� Connecting to database
� Type mapping
� Cursors
� Typical database operations
 Chapter 7. Working with IBM Informix OLE DB Provider 219

http://www.microsoft.com/downloads/details.aspx?FamilyID=6c050fe3-c795-4b7d-b037-185d0506396c

7.3.1 Supported interfaces

An OLE DB application creates objects based on ADO interfaces to perform
operations against a database server. Table 7-3 lists a few ADO interfaces that
are implemented in Informix OLE DB Provider as examples. For a complete list,
refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/s
ii-xa-21954.htm#sii-xa-21954

Table 7-3 Informix OLE DB Provider supported interfaces

Interface Description

IAccessor Provides methods for accessor management

IColumnsInfo Provides information about columns of a rowset or prepared
command

ICommand Executes commands

IDBCreateCommand Obtains a new command

IDBCreateSession Obtains a new session

IDBDataSourceAdmin Creates, destroys, and modifies data source objects

IDBProperties Gets and sets the values of properties on the data source
object or enumerator and obtains information about all
properties that are supported

IErrorLookup Used by OLE DB error objects to determine the values of the
error message, source, Help file path, and context ID based
on the return code and a provider-specific error number

IGetDataSource Obtains an interface pointer to the data source object

IRowsetIdentity Indicates row instance identity is implemented on the rowset
and enables testing for row identity

ISessionProperties Returns information about the properties a session supports
and the current settings of those properties

ITransaction Used to commit, abort, and obtain status information about
transactions
220 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/sii-xa-21954.htm#sii-xa-21954

7.3.2 Connecting to database

In this section, we describe the connection string options with Informix OLE DB
Provider.

The connection details for the database server are passed to Informix OLE DB
Provider using a connection string. If the Provider attribute of the Connection
object is not set, you must include the provider keyword as part of the
connection string to specify the name of Informix OLE DB Provider, ifxoledbc.
For example:

connStr="Provider=Ifxoledbc;Data Source=stores_demo@demo_on"

Table 7-4 describes the specific connection string attributes for Informix OLE DB
Provider.

Table 7-4 Connection string attributes

Keyword Description

Data Source Database and Informix Server to which to connect.
The syntax for the Data Source parameter is as
follows:
database@server
If @server is not specified, the default database
server is used (corresponding to the value specified
by the client’s INFORMIXSERVER registry entry or
environment variable).

User ID The user ID used to connect to the Informix server

Password The password for the user ID

Persist Security Info Specifies whether the data source can keep
authentication information such as the password

Client_locale The client locale for the application which
correspond to the locale used by the Windows OS

Db_locale The database locale that was used when the
database was created

UNICODE Indicates whether to use IBM Informix GLS Unicode
Controls and how the code set conversion to
Unicode is done

decasr8 If set, floating point numbers with a scale greater
than 30 are returned as DBTYPE_R8
 Chapter 7. Working with IBM Informix OLE DB Provider 221

A typical connection string for Informix OLE DB Provider looks similar to the
following string:

Data Source=stores_demo@demo_on; User ID=informix; Password=password; Persist
Security Info=True; CLIENT_LOCALE=en_US.CP1252; DB_LOCALE=en_US.819

The connection details about the Informix server must be stored in the registry
using the setnet32.exe utility included in Client SDK.

7.3.3 Type mapping

Informix OLE DB provider supports all the Informix data types, both built-in and
extended.

Table 7-5 lists the mappings between the standard OLE DB data types and
specific Informix OLE DB types.

Table 7-5 Informix specific type mapping table

RSASWS or
REPORTSTRINGASWSTRING

Enables you to control the data mapping for wide
strings

FBS or FETCHBUFFERSIZE The size in bytes of the buffer size used to send data
to or from the database. Minimum value is 4096,
Maximum 32767. Default is 4096.

Keyword Description

Informix SQL Informix OLE DB Provider

BIGINT DBTYPE_I8

BIGSERIAL DBTYPE_I8

BLOB DBTYPE_BYTES

BOOLEAN DBTYPE_BOOL

BYTE DBTYPE_BYTES

CLOB DBTYPE_STR

DATETIME DBTYPE_DBDATE, DBTYPE_DBTIME,
DBTYPE_DBTIMESTAMP

DECIMAL DBTYPE_NUMERIC

DISTINCT Same as underlying type

FLOAT DBTYPE_R8
222 IBM Informix Developer’s Handbook

There are three Informix OLE DB Provider date and time data types that map to
one DATETIME Informix SQL data type. Which data type you use depends on
the precision of the data type that you desire. See Table 7-6 for a summary.

Table 7-6 DATETIME OLE DB mapping table

INT8 DBTYPE_I8

INTERVAL DBTYPE_STR if mapped as a string
DBTYPE_Ix (8,4,2 or 1) if mapped as a numeric

LIST DBTYPE_VARIANT

LVARCHAR DBTYPE_STR

MONEY (p<=19 s<=4 DBTYPE_CY

MONEY (p>19 s<>4) DBTYPE_NUMERIC

MULTISET DBTYPE_VARIANT

Named ROW DBTYPE_VARIANT

NCHAR DBTYPE_STR

OPAQUE DBTYPE_BYTES

SERIAL DBTYPE_I4

SERIAL8 DBTYPE_I8

SET DBTYPE_VARIANT

TEXT DBTYPE_STR

Unnamed ROW DBTYPE_VARIANT

Informix OLE DB Provider Date and time precision

DBTYPE_DBDATE Day to day, month to day, month to month, year to day,
year to month, and year to year

DBTYPE_DBTIME Hour to hour, hour to minute, hour to second, minute to
minute, minute to second, and second to second

Informix SQL Informix OLE DB Provider
 Chapter 7. Working with IBM Informix OLE DB Provider 223

For a complete list of all the data type mapping, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/u
sing990839.htm#using990839

7.3.4 Cursors

An ADO application uses cursors to move among the data that returned by a
recordset. ADO defines the following types of cursors:

� Forward-Only (adOpenForwardOnly):

Provides a copy of the records at the time the Recordset was created. This is
the default cursor type of ADO.

� Static (adOpenStatic):

Provides a static copy of the records.

� Dynamic (adOpenDynamic):

Provides a real-time copy of the records, new and altered records by other
users are also included.

� Keyset (adOpenKeyset):

Provides a updateable copy of the records at the time the Recordset was
created. Only existing records are included.

DBTYPE_DBTIMESTAMP Day to fraction, day to hour, day to minute, and day to
second
Fraction to fraction, hour to fraction, and minute to
fraction
Month to fraction, month to hour, month to minute, and
month to second
Second to fraction
Year to fraction, year to hour, year to minute, and year
to second

Informix OLE DB Provider Date and time precision
224 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/using990839.htm#using990839

Informix OLE DB Provider supports all these cursor types with some limitations
regarding the use of extended data types and location of the cursor (client or
server side). For example:

� Updates of tables with extended data types are not allowed with client-side
scrollable cursors.

� Server-side scrollable cursors are not supported with simple large objects
(BYTE and TEXT) or collections.

� ROWIDs (internal columns added by the Informix server on non fragmented
tables) are required on tables bookmarks and updates.

Refer to the IBM Informix OLE DB Provider Programmer's Guide for a complete
list of these caveats:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/s
ii-using-29878.htm#sii-using-29878

7.3.5 Typical database operations

In this section, we provide examples of how to use Informix OLE DB Provider to
perform typical database operations against an Informix database. We cover
operations such as executing SQL statements, selecting data, and handling
errors from Informix OLE DB Provider.

For general information about OLE DB architecture and programming, refer to:

http://msdn.microsoft.com/en-us/library/ms713643%28v=VS.85%29.aspx

Command
You can execute SQL commands using an OLE DB provider through the
ICommand interface.

The application has to perform the following steps to execute an SQL statement:

1. Call QueryInterface for IDBCreateCommand to check if commands are
supported in the session.

2. Call IDBCreateCommand::CreateCommand to create the command.

3. Call ICommandText::SetCommandText to specify the SQL statement for the
command.

4. Call ICommand::Execute to execute the SQL statement.
 Chapter 7. Working with IBM Informix OLE DB Provider 225

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.oledb.doc/sii-using-29878.htm#sii-using-29878
http://msdn.microsoft.com/en-us/library/ms713643%28v=VS.85%29.aspx

Example 7-3 demonstrates how to connect to the database and execute an
UPDATE statement. In this example, we use the following operations and
interfaces:

1. Connect to the database

a. Initialize common property options (prompt, DSN, user, and password).

b. Get an Interface for properties:

InterfacepIDBInitialize->QueryInterface(IID_IDBProperties)
pIDBProperties->SetProperties()

c. Get an Interface for creating session object:

pIDBInitialize->QueryInterface(IID_IDBCreateSession)

d. Create a session object:

pCreateSession->CreateSession()

2. Create a command object:

a. Get an Interface for creating command object:

pSession->QueryInterface(IID_IDBCreateCommand)

b. Create the command object and get ICommandText:

Interface:pCreateCommand->CreateCommand()

3. Set the CommandText for the command object:

pCommandText->SetCommandText()

4. Execute the command:

pCommandText->Execute()

5. Clean up.

Example 7-3 The command.cpp sample

#define UNICODE
#define _UNICODE
#include <oledb.h>
#include <oledberr.h>
#include <msdaguid.h>
#include <msdadc.h>
#include <comdef.h>
#include <windows.h>
#include <stdio.h>

// CLSID For IBM-Informix Client Side OLE DB Provider
const GUID CLSID_IFXOLEDBC= {0xa6d00422, 0xfd6c, 0x11d0,
 {0x80, 0x43, 0x0, 0xa0, 0xc9, 0xf, 0x1c, 0x59}};

#define CHECK(hr) if (((HRESULT)(hr)) < 0) {printf("Error"); return(hr);}
226 IBM Informix Developer’s Handbook

int main()
{
 HRESULT hr = S_OK;
 IDBInitialize *pIDBInitialize;
 IDBCreateSession *pCreateSession;
 IDBCreateCommand *pCreateCommand;
 IUnknown *pSession;
 ICommandText *pCommandText;
 IDBProperties *pIDBProperties;
 DBPROP InitProperties[4];
 DBPROPSET rgInitPropSet;

 _bstr_t bstrDsnName = "stores_demo@demo_on";
 _bstr_t bstrUserName = "informix";
 _bstr_t bstrPassWord = "password";
 _bstr_t bstrCommand = (WCHAR *) L"UPDATE state SET sname = 'California'
WHERE code = 'CA'";

 CoInitialize(NULL);

// Instantiate a data source object
 CHECK(hr = CoCreateInstance((REFCLSID) CLSID_IFXOLEDBC, NULL,
 CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void **) &pIDBInitialize))

// Set all Properties, Prompt, DSN, User and Password
 // Initialize common property options.
 for (ULONG i = 0; i < 4; i++)
 {
 VariantInit(&InitProperties[i].vValue);
 InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[i].colid = DB_NULLID;
 InitProperties[1].vValue.vt = VT_BSTR;
 }

 InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 InitProperties[0].vValue.vt = VT_I2;
 InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;
 InitProperties[1].dwPropertyID = DBPROP_INIT_DATASOURCE;
 InitProperties[1].vValue.bstrVal = bstrDsnName;
 InitProperties[2].dwPropertyID = DBPROP_AUTH_USERID;
 InitProperties[2].vValue.bstrVal = bstrUserName;
 InitProperties[3].dwPropertyID = DBPROP_AUTH_PASSWORD;
 InitProperties[3].vValue.bstrVal = bstrPassWord;
 rgInitPropSet.guidPropertySet = DBPROPSET_DBINIT;
 rgInitPropSet.cProperties = 4;
 rgInitPropSet.rgProperties = InitProperties;

 // Get initialization properties.Interface
 CHECK (hr = pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void**) &pIDBProperties))
 CHECK(hr = pIDBProperties->SetProperties(1, &rgInitPropSet))
 CHECK(hr = pIDBProperties->Release())
 Chapter 7. Working with IBM Informix OLE DB Provider 227

// Connect to the Database Server
 CHECK(hr = pIDBInitialize->Initialize())
 // Get an Interface for creating Session Object
 CHECK(hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void **) &pCreateSession))
 // Create a Session Object
 CHECK(hr = pCreateSession->CreateSession(NULL, IID_IUnknown,
 (IUnknown **) &pSession))
 CHECK(hr = pCreateSession->Release())

// Create Command Object
 // Get an Interface for creating Command Object
 CHECK(hr = pSession->QueryInterface(IID_IDBCreateCommand,
 (void **) &pCreateCommand))
 // Create Command Object and get ICommandText Interface
 CHECK(hr = pCreateCommand->CreateCommand(NULL, IID_ICommandText,
 (IUnknown **) &pCommandText))
 CHECK(hr = pCreateCommand->Release())

// Set the CommandText
 CHECK(hr = pCommandText->SetCommandText(DBGUID_DBSQL, bstrCommand))

// Executing the Command
 CHECK(hr = pCommandText->Execute(NULL, IID_NULL, NULL, NULL, NULL))
 printf("Row Updated");

// Cleanup
 pCommandText->Release();
 pCommandText = NULL;
 pSession->Release();
 pSession = NULL;
 pIDBInitialize -> Uninitialize();
 pIDBInitialize -> Release();
 pIDBInitialize = NULL;

 CoUninitialize();
 return(0);
}

Example 7-4 describes how to compile and run Example 7-3 on page 226. The
connection string is constructed inside the program. No command line
parameters are passed.

Example 7-4 Output of the command.cpp sample

C:\work>cl /EHsc /nologo command.cpp
command.cpp

C:\work>command
Row Updated
C:\work>
228 IBM Informix Developer’s Handbook

Rowset
A rowset is a set of rows, and each row has a number of columns of data.
Rowsets are the main OLE DB objects that are used to expose data from a data
source.

You can create a rowset object with the following methods:

� Explicitly create a rowset by calling IOpenRowset::OpenRowset().

� Execute an SQL statement such as SELECT that returns rows with a
ICommand:Execute method.

� Execute any method that returns a rowset or a schema rowset, for example,
ColumnsRowset::GetColumnsRowset or IDBSchemaRowset::GetRowset.

Example 7-5 demonstrates how to create a rowset object and retrieve metadata
information. The operations and interfaces to initialize the session and connect to
the database are always the same in a OLE DB application. This example also
does the following operations:

1. Connect to the database.

2. Create a Command Object.

3. Create a OpenRowSet Object:

pCreateCommand->QueryInterface(IID_IOpenRowset)
pIOpenRowset->OpenRowset()

4. Obtain access to the IColumnsInfo interface from the rowset object:

pRowset->QueryInterface(IID_IColumnsInfo)

5. Retrieve the Column Information:

pColumnsInfo->GetColumnInfo()

6. Clean up.

Example 7-5 The rowset.cpp sample

#define UNICODE
#define _UNICODE
#include <oledb.h>
#include <oledberr.h>
#include <msdaguid.h>
#include <msdadc.h>
#include <comdef.h>
#include <windows.h>
#include <stdio.h>

// CLSID For IBM-Informix Client Side OLE DB Provider
const GUID CLSID_IFXOLEDBC= {0xa6d00422, 0xfd6c, 0x11d0,
 {0x80, 0x43, 0x0, 0xa0, 0xc9, 0xf, 0x1c, 0x59}};
 Chapter 7. Working with IBM Informix OLE DB Provider 229

#define CHECK(hr) if (((HRESULT)(hr)) < 0) {printf("Error"); return(hr);}

int main()
{
 HRESULT hr = S_OK;

 IDBInitialize *pIDBInitialize;
 IUnknown *pSession;
 ITransactionJoin *pITransactionJoin;
 ICommandText *pCommandText;

IOpenRowset *pIOpenRowset;
IColumnsInfo *pColumnsInfo;

 IDBProperties* pIDBProperties;
 DBPROP InitProperties[4];
 DBPROPSET rgInitPropSet;
 IDBCreateSession *pCreateSession = NULL;
 IDBCreateCommand *pCreateCommand = NULL;

IRowset *pRowset = NULL;
DBID TableID;
DBPROPSET rgPropSets[1];
DBCOLUMNINFO *pDBColumnInfo;
WCHAR *pStringsBuffer;
ULONG lNumCols;
int i=0;

 _bstr_t bstrDsnName = "stores_demo@demo_on";
 _bstr_t bstrUserName = "informix";
 _bstr_t bstrPassWord = "password";
 _bstr_t TableName = L"customer";

 CoInitialize(NULL);

// Instantiate a data source object
 CHECK(hr = CoCreateInstance((REFCLSID) CLSID_IFXOLEDBC, NULL,
 CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void **) &pIDBInitialize))

// Set all Properties, Prompt, DSN, User and Password
 // Initialize common property options.
 for (ULONG i = 0; i < 4; i++)
 {
 VariantInit(&InitProperties[i].vValue);
 InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[i].colid = DB_NULLID;
 InitProperties[1].vValue.vt = VT_BSTR;
 }

 InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 InitProperties[0].vValue.vt = VT_I2;
 InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;
 InitProperties[1].dwPropertyID = DBPROP_INIT_DATASOURCE;
 InitProperties[1].vValue.bstrVal = bstrDsnName;
 InitProperties[2].dwPropertyID = DBPROP_AUTH_USERID;
 InitProperties[2].vValue.bstrVal = bstrUserName;
230 IBM Informix Developer’s Handbook

 InitProperties[3].dwPropertyID = DBPROP_AUTH_PASSWORD;
 InitProperties[3].vValue.bstrVal = bstrPassWord;
 rgInitPropSet.guidPropertySet = DBPROPSET_DBINIT;
 rgInitPropSet.cProperties = 4;
 rgInitPropSet.rgProperties = InitProperties;

 // Get initialization properties.Interface
 CHECK (hr = pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void**) &pIDBProperties))
 CHECK(hr = pIDBProperties->SetProperties(1, &rgInitPropSet))
 CHECK(hr = pIDBProperties->Release())

// Connect to the Database Server
 CHECK(hr = pIDBInitialize->Initialize())
 // Get an Interface for creating Session Object
 CHECK(hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void **) &pCreateSession))
 // Create a Session Object
 CHECK(hr = pCreateSession->CreateSession(NULL, IID_IUnknown,
 (IUnknown **) &pSession))
 CHECK(hr = pCreateSession->Release())

// Create Command Object
 // Get an Interface for creating Command Object
 CHECK(hr = pSession->QueryInterface(IID_IDBCreateCommand,
 (void **) &pCreateCommand))
 // Create Command Object and get ICommandText Interface
 CHECK(hr = pCreateCommand->CreateCommand(NULL, IID_ICommandText,
 (IUnknown **) &pCommandText))
 CHECK(hr = pCreateCommand->Release())

// Create a OpenRowSet
CHECK(hr = pCreateCommand->QueryInterface(IID_IOpenRowset,

 (void **)&pIOpenRowset))
TableID.eKind = DBKIND_NAME;
TableID.uName.pwszName = TableName;

CHECK(hr = pIOpenRowset->OpenRowset(NULL, &TableID, NULL, IID_IRowset,
 0, rgPropSets, (IUnknown **)&pRowset
))

// Obtain access to the IColumnsInfo inteface, from the Rowset object
 CHECK(hr = pRowset->QueryInterface(IID_IColumnsInfo, (void **)
 &pColumnsInfo))

// Retrieve the Column Information
CHECK(hr = pColumnsInfo->GetColumnInfo(&lNumCols, &pDBColumnInfo,

 &pStringsBuffer))
wprintf(L"\nTable : %s\nColumns :%d\nName\t\tType\tLength",

 TableID.uName.pwszName, lNumCols);
for (i=0; i<(int)lNumCols; ++i)
{

 Chapter 7. Working with IBM Informix OLE DB Provider 231

 wprintf(L"\n%s\t%d\t%ld", (pDBColumnInfo+i)->pwszName,
 (pDBColumnInfo+i)->wType, (pDBColumnInfo+i)->ulColumnSize);

}

// Free the Column Information Interface
CHECK((hr = pColumnsInfo->Release()))

// Cleanup
 pCommandText->Release();
 pCommandText = NULL;
 pSession->Release();
 pSession = NULL;
 pIDBInitialize -> Uninitialize();
 pIDBInitialize -> Release();
 pIDBInitialize = NULL;

 CoUninitialize();
 return(0);
}

Example 7-6 shows the name, type, and length columns of the customer table.

Example 7-6 Output of the rowset.cpp sample

C:\work>cl /EHsc /nologo rowset.cpp
rowset.cpp

C:\work>rowset

Table : customer
Columns :7
Name Type Length
customer_num 3 4
customer_type 129 1
customer_name 129 32767
customer_loc 3 4
contact_dates 129 32767
cust_discount 131 19
credit_status 129 1
C:\work>

Large objects
Large objects (simple and smart) do not require any special handling when using
Informix OLE DB Provider.

Smart large objects (BLOB and TEXT) support the ADO GetChunk() and
AppendChunk() methods.
232 IBM Informix Developer’s Handbook

Example 7-7 demonstrates how to retrieve a CLOB column using the GetChunk()
method from the ADO library in C++. This example fetches the first three rows of
the catalog table from the sample stores_demo database and displays the data
for the catalog_number and advert_descr columns.

Example 7-7 The select.cpp sample

#include <stdio.h>
#include <afxdisp.h>

#import "c:\program files\common files\system\ado\msado15.dll" rename

("EOF","adoEOF") no_namespace

#define CREATEiNSTANCE(sp,riid) { HRESULT _hr =sp .CreateInstance(__uuidof(riid

)); \
 if (FAILED(_hr)) _com_issue_error(_hr); }

#define RsITEM(rs,x) rs->Fields->Item[_variant_t(x)]->Value
#define UC (char *)
struct InitOle {
 InitOle() { ::CoInitialize(NULL); }
 ~InitOle() { ::CoUninitialize(); }
} _init_InitOle_;

void main(){

 _RecordsetPtr spRS;
 _ConnectionPtr spCON;
 _variant_t varBLOB;
 long lDataLength = 0;
 int nrows=3;

 try{
 CREATEiNSTANCE(spCON,Connection);
 spCON->Provider="ifxoledbc";
 spCON->ConnectionString = L"Data Source=stores_demo@demo_on;"
 L"User ID=informix; Password=password;";

// Connect to the database
 spCON->Open("", "", "", -1);
 CREATEiNSTANCE(spRS,Recordset)
 spRS->PutRefActiveConnection(spCON);

spRS->Open(_bstr_t("catalog"),vtMissing, adOpenForwardOnly,
 adLockOptimistic,adCmdTable);

 while((spRS->adoEOF == false) && nrows>0){
 nrows--;
 printf("catalog_num = %s\n", UC _bstr_t(RsITEM(spRS,"catalog_num")));
// Get the size of the large object
 lDataLength = spRS->Fields->Item["advert_descr"]->ActualSize;
 Chapter 7. Working with IBM Informix OLE DB Provider 233

 if(lDataLength > 0) {
// Call GetChunk to retrieve the Blob data
 VariantInit(&varBLOB);
 varBLOB = spRS->Fields->Item["advert_descr"]->GetChunk(lDataLength);
 printf("advert_descr = %s\n", UC _bstr_t(varBLOB));
 }
// Move the cursor to the next row
 spRS->MoveNext();
 }

 spRS->Close();
 spCON->Close();
 }
 catch(_com_error &e){
 _bstr_t bstrSource(e.Source());
 _bstr_t bs = _bstr_t(" Error: ") + _bstr_t(e.Error()) +
 _bstr_t(" Msg: ") + _bstr_t(e.ErrorMessage()) +
 _bstr_t(" Description: ") + _bstr_t(e.Description());
 printf("Error %s\n", bs);
 }
}
#undef UC

Example 7-8 shows the content of the output.

Example 7-8 Output of the select.cpp sample

C:\work>cl /EHsc /nologo select.cpp /DWINVER=0x0600
select.cpp

C:\work>select
catalog_num = 10001
advert_descr = Brown leather. Specify first baseman's or infield/outfield
style. Specify right- or left-handed.
catalog_num = 10002
catalog_num = 10003

C:\work>

Errors
Informix OLE DB Provider supports the ISupportErrorInfo interface.
Applications can retrieve information about an OLE DB error using this interface.

Methods such as IErrorRecords->GetErrorInfo(),
IErrorInfo->GetDescription() and IErrorInfo->GetSource() are fully
supported by Informix OLE DB Provider.
234 IBM Informix Developer’s Handbook

Example 7-9 illustrates how to use these methods. This example retrieves the
error information directly after the IDBInitialize->Initialize() function call.
Because error handling should be done after every use of an interface function, it
is a good practice to create an error handle routine to avoid code redundancy.

Example 7-9 The errorinfo.cpp sample

#define UNICODE
#define _UNICODE
#include <oledb.h>
#include <oledberr.h>
#include <msdaguid.h>
#include <msdadc.h>
#include <comdef.h>
#include <windows.h>
#include <stdio.h>

// CLSID For IBM-Informix Client Side OLE DB Provider
const GUID CLSID_IFXOLEDBC= {0xa6d00422, 0xfd6c, 0x11d0,
 {0x80, 0x43, 0x0, 0xa0, 0xc9, 0xf, 0x1c, 0x59}};

#define CHECK(hr) if (((HRESULT)(hr)) < 0) {printf("Error"); return(hr);}

HRESULT GetDetailedErrorInfo(
HRESULThresult,
IUnknown *pBadObject,
GUID IID_BadIntereface);

int main()
{
 HRESULT hr = S_OK;

 IDBInitialize *pIDBInitialize;
 IUnknown *pSession;

 IDBProperties* pIDBProperties;
 DBPROP InitProperties[4];
 DBPROPSET rgInitPropSet;
 IDBCreateSession *pCreateSession = NULL;

 IErrorInfo *pErrorInfo = NULL;
 IErrorInfo *pErrorInfoRec = NULL;
 IErrorRecords *pErrorRecords = NULL;
 ISupportErrorInfo *pSupportErrorInfo = NULL;

 ULONG i,ulNumErrorRecs;
 BSTR bstrDescriptionOfError = NULL;
 BSTR bstrSourceOfError = NULL;

 _bstr_t bstrDsnName = "wrong_db@demo_on"; // WRONG DATABASE
 _bstr_t bstrUserName = "informix";
 Chapter 7. Working with IBM Informix OLE DB Provider 235

 _bstr_t bstrPassWord = "password";

 CoInitialize(NULL);

// Instantiate a data source object
 CHECK(hr = CoCreateInstance((REFCLSID) CLSID_IFXOLEDBC, NULL,
 CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void **) &pIDBInitialize))

// Set all Properties, Prompt, DSN, User and Password
 // Initialize common property options.
 for (ULONG i = 0; i < 4; i++)
 {
 VariantInit(&InitProperties[i].vValue);
 InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[i].colid = DB_NULLID;
 InitProperties[1].vValue.vt = VT_BSTR;
 }

 InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 InitProperties[0].vValue.vt = VT_I2;
 InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;
 InitProperties[1].dwPropertyID = DBPROP_INIT_DATASOURCE;
 InitProperties[1].vValue.bstrVal = bstrDsnName;
 InitProperties[2].dwPropertyID = DBPROP_AUTH_USERID;
 InitProperties[2].vValue.bstrVal = bstrUserName;
 InitProperties[3].dwPropertyID = DBPROP_AUTH_PASSWORD;
 InitProperties[3].vValue.bstrVal = bstrPassWord;
 rgInitPropSet.guidPropertySet = DBPROPSET_DBINIT;
 rgInitPropSet.cProperties = 4;
 rgInitPropSet.rgProperties = InitProperties;

 // Get initialization properties.Interface
 CHECK (hr = pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void**) &pIDBProperties))
 CHECK(hr = pIDBProperties->SetProperties(1, &rgInitPropSet))
 CHECK(hr = pIDBProperties->Release())

// Connect to the Database Server
 hr = pIDBInitialize->Initialize();
 if (hr < 0) {
 pIDBInitialize->QueryInterface(IID_ISupportErrorInfo,
 (LPVOID FAR*)&pSupportErrorInfo);
 pSupportErrorInfo->InterfaceSupportsErrorInfo(__uuidof(pIDBInitialize));
 GetErrorInfo(0,&pErrorInfo);

//Get the IErrorRecord interface and get the count of error recs.
 pErrorInfo->QueryInterface(IID_IErrorRecords,(LPVOID FAR*)&pErrorRecords);
 pErrorRecords->GetRecordCount(&ulNumErrorRecs);

//Get the error record, (we only get the first one)
 pErrorRecords->GetErrorInfo(0, GetUserDefaultLCID(), &pErrorInfoRec);
 pErrorInfoRec->GetDescription(&bstrDescriptionOfError);
236 IBM Informix Developer’s Handbook

 pErrorInfoRec->GetSource(&bstrSourceOfError);

 printf("ERROR!\nResult of 0x%0x (%ld) returned\n",(long)hr,(long)hr);
 printf("Error Source: %S\n",bstrSourceOfError);
 printf("Error Description: %S\n", bstrDescriptionOfError);

 pErrorInfo->Release();
 pErrorRecords->Release();
 pSupportErrorInfo->Release();
 pErrorInfoRec->Release();
 SysFreeString(bstrSourceOfError);
 SysFreeString(bstrDescriptionOfError);
 } // if

/* ... some useful code here */

 pIDBInitialize -> Uninitialize();
 pIDBInitialize -> Release();
 pIDBInitialize = NULL;

 CoUninitialize();
 return(0);
}

Example 7-10 shows the output of Example 7-9 on page 235. We use a
non-existent database for the connection. An error is expected during
initialization.

Example 7-10 Output of the errorinfo.cpp sample

C:\work>cl /EHsc /nologo errorinfo.cpp
errorinfo.cpp

C:\work>errorinfo
ERROR!
Result of 0x80004005 (-2147467259) returned
Error Source: Ifxoledbc
Error Description: EIX000: (-329) Database not found or no system permission.

C:\work>

7.4 Visual Basic, ADO.NET, and SQL Server

ActiveX and COM objects are a core component of any Windows operating
system. For this reason, OLE DB providers are used extensively by many
Windows applications. In this section, we describe how to use Informix OLE DB
 Chapter 7. Working with IBM Informix OLE DB Provider 237

Provider with some of the available Microsoft technologies and applications, such
as ADO.NET or Microsoft SQL Server.

7.4.1 OLE DB with Visual Basic

Visual Basic (VB) is a programming language developed by Microsoft that
focuses on the use of COM objects. Visual Basic is design to be easy to learn
and to allow the development of database applications with far less effort than C
or C++ languages. ADO and Informix OLE DB Provider are widely used with
Visual Basic.

In this section, we demonstrate how to use Informix OLE DB Provider to access
an Informix database using a VBScript that is based on Visual Basic.

Select data
Example 7-11 shows how to query the state table using a recordset with a
VBScript file. We open the recordset using a static server cursor (adUseServer=2
and adOpenStatic=3).

Example 7-11 The select.vbs script

' Create the ADO objects
 set cx=createobject("ADODB.Connection")
 set cr=createobject("ADODB.Recordset")

' Set the connection string
 cx.provider="Ifxoledbc"
 cx.connectionstring="Data Source=stores_demo@demo_on;"
' Open the Connection
 cx.open
 set cr.activeconnection=cx
 cr.cursorlocation=2
' Open the Recordset
 cr.open "SELECT * FROM state WHERE code='CA'", cx, 2, 3
 WScript.Echo cr.fields("sname")

Example 7-12 shows the output of the this script.

Example 7-12 Output of the select.vbs script

c:\work>select.vbs
California

c:\work>
238 IBM Informix Developer’s Handbook

Comparing this example with Example 7-5 on page 229, which is written on C++,
shows how easy it is to use OLE DB with Visual Basic.

Example 7-13 demonstrates how to scroll through a recordset.

Example 7-13 The scroll.vbs script

' Create the ADO objects
 set cx=createobject("ADODB.Connection")
 set cr=createobject("ADODB.Recordset")
 set cm=createobject("ADODB.Command")
' Set the connection string
 cx.provider = "Ifxoledbc.2"
 cx.Open "Data Source=stores_demo@demo_on"
' Set the Command SQL text
 cm.ActiveConnection = cx
 cm.CommandText = "SELECT * FROM state"
' Open the cursor
 cr.CursorLocation = 3 ‘ adUseClient
 cr.Open cm
 WScript.Echo "First row: " & cr.fields("sname")
' Scroll to the last element in the recordset
 cr.MoveLast
 WScript.Echo "Last row : " & cr.fields("sname")

We use the MoveLast() method to position the cursor in the last record, as shown
in the output in Example 7-14.

Example 7-14 Output of the scroll.vbs script

c:\work>scroll.vbs
First row: Alaska
Last row : Puerto Rico

c:\work>

Add new data
Example 7-15 demonstrate how to add a new record to a table using the
AddNew() method. After adding a new record to the table, the code opens a
cursor and positions it at the end of the recordset to retrieve the last inserted row.

Example 7-15 The addnew.vbs script

' Create the ADO objects
 set cx = CreateObject("ADODB.Connection")
 set cr = CreateObject("ADODB.Recordset")
' Set the connection string
 cx.provider = "Ifxoledbc"
 Chapter 7. Working with IBM Informix OLE DB Provider 239

 cx.connectionstring = "Data Source=stores_demo@demo_on;"
 cx.Open
 Set cr.activeconnection = cx
' Open the recordset
 cr.Open "SELECT * FROM state", cx, 3, 2
' Add a new record to the recordset
 cr.AddNew
 cr.fields("code") = "UN"
 cr.fields("sname") = "Unkown"
 cr.fields("sales_tax") = "0.0"
' Update the database table
 cr.Update
 cr.Close
' Retrieve the new inserterd row
 cr.open "SELECT * FROM state", cx, 3, 3
 cr.MoveLast
 WScript.Echo cr.fields("sname")

Example 7-16 shows the value of the sname column after the update operation.

Example 7-16 Output of the addnew.vbs script

c:\work>addnew.vbs
Unkown

c:\work>

7.4.2 ADO.NET and the OLEDB bridge

In addition to ADO, developers can also use Informix OLE DB Provider with
ADO.NET. Similar to ADO but within the .NET Framework, ADO.NET is a set of
.NET components that are used to retrieve, manipulate, and update data from a
data source.

One of the .NET data providers that is included with ADO.NET is the Microsoft
OLE DB Provider for .NET. This .NET provider acts as bridge between the .NET
framework and standard OLE DB providers so that developers can use .NET
technology with a database server, even if there is no specific .NET data provider
for that particular database.

IBM has specific .NET providers to access an Informix database:

� IBM Informix .NET Provider
� IBM Data Server Provider for .NET

However, developers can use Informix OLE DB Provider through the Microsoft
OLE DB .NET Provider.
240 IBM Informix Developer’s Handbook

Example 7-17 demonstrates how to use Informix OLE DB Provider with a .NET
application. The connection string for Informix OLE DB Provider is the same.
Refer 7.3.2, “Connecting to database” on page 221 for the complete syntax.

Example 7-17 The getoledb.cs sample

using System;
using System.Data;
using System.Data.OleDb;

class sample {
 static void Main(string[] args) {

 OleDbConnection con = new OleDbConnection();
 con.ConnectionString = "Provider=Ifxoledbc;"
 +" Data Source=stores_demo@demo_on; User ID=informix;"
 +" Password=password";

 DataSet ds = new DataSet();
 string sql = "SELECT first 3 * FROM STATE";
 OleDbDataAdapter da = new OleDbDataAdapter(sql,con);

 da.Fill(ds,"state");

 foreach(DataRow dr in ds.Tables[0].Rows) {
 Console.WriteLine(dr["code"]);
 Console.WriteLine(dr["sname"]);
 Console.WriteLine(dr["sales_tax"]);
 }

 con.Close();
 con.Dispose();
 }
}

Example 7-18 demonstrates how to compile and run this .NET example.

Example 7-18 Output of the getoledb.cs sample

c:\work>csc.exe /nologo getoledb.cs

c:\work>getoledb
AK
Alaska
0.00000
HI
Hawaii
0.04000
CA
 Chapter 7. Working with IBM Informix OLE DB Provider 241

California
0.08250

c:\work>

7.4.3 SQL Server

Using Informix OLE DB Provider, you can select data from an Informix database
directly from Microsoft SQL Server.

SQL Server uses OLE DB to create linked servers and to retrieve data from any
OLE DB data source.

There are no specific steps to configure or to use Informix OLE DB Provider with
SQL Server as a linked server. If Informix OLE DB Provider is installed and
configured correctly, SQL Server can use it to connect to an IBM Informix
database server.

We describe how to set up a linked server using the Informix provider in this
section.
242 IBM Informix Developer’s Handbook

Figure 7-1 shows the New Linked Server dialog box where you set the
connection details for Informix OLE DB Provider.

Figure 7-1 New Linked Server dialog box

In this dialog box, set the following fields:

� Linked server: Specify the name for the SQL Server to link.

� Provider: Choose IBM Informix OLE DB Provider from the drop-down list.

� Product name: Specify the name of the Informix provider, which in this
example is ifxoledbc.

� Data source: Specify the name of the data source as database@server.

� Provider string: Specify any additional connection string parameters that the
provider uses.
 Chapter 7. Working with IBM Informix OLE DB Provider 243

The user ID for the Informix database server might differ from the one that is
used with SQL Server. If so, you need to set a remote user mapping. Figure 7-2
shows a user mapping between the sa and informix users.

Figure 7-2 Linked Server Properties: Security options

You can also create linked servers using only SQL statements. Example 7-19
illustrates how to create a linked server to connect to the demo_on Informix
instance. We use the same connection details shown in Figure 7-1 on page 243.

Example 7-19 Linked Server SQL script

EXEC master.dbo.sp_addlinkedserver
 @server = N'demo_on',
 @srvproduct=N'ifxoledbc',
 @provider=N'ifxoledbc',
 @datasrc=N'stores7@demo_on',
 @provstr=N''

EXEC sp_addlinkedsrvlogin 'demo_on',false,'sa','informix','password'

SELECT * FROM demo_on.stores7.informix.customer
244 IBM Informix Developer’s Handbook

The last SQL statement in the script uses the linked server to retrieve the data
from the customer table:

SELECT * FROM demo_on.stores7.informix.customer

For more information about linked servers, refer to:

http://msdn.microsoft.com/en-us/library/ms188279.aspx

7.5 Troubleshooting and tracing

In this section, we discuss typical errors that can occur when using Informix OLE
DB Provider and how to enable the tracing facility to collect diagnostic
information.

7.5.1 Typical errors

Most errors encountered when using Informix OLE DB Provider are due to an
incorrect setup or an invalid connection string passed to the provider.

Informix OLE DB Provider uses the same connectivity libraries as other
components of Client SDK. It also uses the information that is stored in the
registry through the setnet32.exe utility for the database server connection.

It is always a good practice to test this basic connectivity using the iLogin utility
that is included in the Client SDK directory.

Provider not found
Here, we explain the reason and the solution for a “Provider not found” error.

Reason
This error appears if the Windows operating system fails to locate the OLE DB
provider class that is specified by the application.

Solution
During the installation of Client SDK, the OLE DB provider is registered
automatically within the Windows registry. You can register Informix OLE DB
Provider manually using the regsvr32 utility as follows:

regsvr32.exe %INFORMIXDIR%\bin\ifxoledbc.dll

If you are running a 64-bit version of Windows, make sure that you register the
provider using the correct version of the regsvr32 binary. Otherwise, it can
 Chapter 7. Working with IBM Informix OLE DB Provider 245

http://msdn.microsoft.com/en-us/library/ms188279.aspx

happen that the 32-bit provider is registered as a 64-bit provider (or vice versa)
and the Windows operating system will fail to find and load the provider.

You can verify that the provider library is registered correctly by examining the
Windows registry. Example 7-20 shows the registry entry for 32-bit and 64-bit
Informix OLE DB Provider. Remember that the name of the Informix provider is
ifxoledbc.

Example 7-20 Informix OLE DB registry keys

C:\work>c:\windows\syswow64\reg query
"HKEY_CLASSES_ROOT\CLSID\{A6D00422-FD6C-11D0-8043-00A0C90F1C59}\InprocServer32"

HKEY_CLASSES_ROOT\CLSID\{A6D00422-FD6C-11D0-8043-00A0C90F1C59}\InprocServer32
 (Default) REG_SZ C:\Program Files
(x86)\IBM\Informix\Client-SDK\bin\ifxoledbc.dll
 ThreadingModel REG_SZ Both

C:\work>c:\windows\system32\reg query
"HKEY_CLASSES_ROOT\CLSID\{A6D00422-FD6C-11D0-8043-00A0C90F1C59}\InprocServer32"

HKEY_CLASSES_ROOT\CLSID\{A6D00422-FD6C-11D0-8043-00A0C90F1C59}\InprocServer32
 (Default) REG_SZ C:\Program
Files\IBM\Informix\Client-SDK\bin\ifxoledbc.dll
 ThreadingModel REG_SZ Both

C:\work>

Failed to load the Ifxoledbc.dll
Here, we explain the reason and the solution for a “Failed to load the
Ifxoledbc.dll” error.

Reason
The application fails to load Informix OLE DB Provider or one of its libraries.

Solution
The value of INFORMIXDIR (as a environment variable or in the registry) should
be the directory where Client SDK is installed. Ensure that the environment
variable PATH contains the %INFORMIXDIR%\bin directory. For example:

PATH=C:\Program Files\IBM\Informix\Client-SDK\bin;%PATH%

When an application loads Informix OLE DB Provider, Client SDK libraries that
the provider needs for communication and registry access are loaded from the
directory that is used in the registration process.
246 IBM Informix Developer’s Handbook

On 64-bit version of Windows operating system, ensure that the PATH and
INFORMIXDIR variables are set correctly for all users. Some applications, such
as SQL Server, are executed under credentials that are different than the logged
user and that can have different settings for this variables.

Failed to connect to the database
Here, we explain the reason and the solution for a “Failed to connect to the
database” error.

Reason
The most common reason for this type of error is due to invalid parameters in the
connection string or invalid connectivity information.

Solution
If the application is getting an Informix OLE DB error, it has managed to load
Informix OLE DB Provider, but it is failing during connection.

For any connection error, always ensure that the basic connectivity works.
Testing whether the client system has access to the database using the iLogin
utility can help to narrow the problem.

If iLogin fails, verify that the connection parameters for the database (server
name, port number, host name, and so on) are correct. Use the setnet32.exe
utility to verify that the information stored in the registry is valid.

The user credentials (user ID and password) can also be set in the registry using
the setnet32.exe utility. Verify that both the user ID and password are valid.

The majority of the connection string parameters must be included exactly as
they appear in Table 7-4 on page 221. Invalid parameters are ignored and can
cause an error connection. See Table 7-7 for examples of valid parameters.

Table 7-7 Valid parameters

If you are using GLS variables (Client_Locale or Db_locale), make sure that
they are set correctly. If you do not use UNICODE, the code set part of
Client_Locale should be the same as your operating system. Db_Locale should
be your database locale.

Valid Invalid

Data Source DataSource, DSN

User ID UserID, UID

Password PWD
 Chapter 7. Working with IBM Informix OLE DB Provider 247

Failure when handling database data
Here, we explain the reason and the solution for a “Failed when handling
database data” error.

Reason
These types of errors are caused by using the wrong data type when accessing
Informix tables.

Solution
Informix OLE DB Provider requires additional functions and tables in the
sysmaster database to handle Informix data types correctly. These objects are
created when running the coledbp.sql SQL script.

This script is located in the %INFORMIXDIR%\etc directory, and must be executed
against the sysmaster database as the informix user.

If you are upgrading from an older version of Client SDK, remove these objects
by running the doledbp.sql script from the old client before using the new
coledbp.sql script.

7.5.2 Tracing

Tracing is useful when diagnosing application problems such as SQL errors or
unexpected behaviors and can even be used for performance analysis.

A developer can set the following types of tracing when using Informix OLE DB
Provider:

� Informix OLE DB Trace
� SQLIDEBUG

Informix OLE DB Trace
Informix OLE DB Trace is specific to Informix OLE DB Provider. You can set the
IFXOLEDBCTRACE environment variable to point to the location of the trace file,
for example:

IFXOLEDBCTRACE=oledbtrace.txt

The trace file that is generated contains the calls to all the OLE DB interfaces that
the provider uses.

Example 7-21 shows a typical Informix OLE DB trace file.

Example 7-21 OLE DB trace

Wed Jun 30 13:59:01 2010
248 IBM Informix Developer’s Handbook

 A44: 53C Enter Clsfact::QueryInterface
 Object Address: 0x032C2CB8
 A44: 53C Enter Clsfact::AddRef
 Object Address: 0x032C2CB8
 A44: 53C Exit Object Address: 0x032C2CB8 hr=2

qi: 032C2CB8 (pif 032C2CB8)
 A44: 53C Enter Clsfact::Release
 Object Address: 0x032C2CB8
 A44: 53C Exit Object Address: 0x032C2CB8 hr=1

 A44: 53C Enter Clsfact::AddRef
 Object Address: 0x032C2CB8
 A44: 53C Exit Object Address: 0x032C2CB8 hr=2

 A44: 53C Enter Clsfact::Release
 Object Address: 0x032C2CB8
 A44: 53C Exit Object Address: 0x032C2CB8 hr=1

 A44: 53C Enter Clsfact::QueryInterface
 Object Address: 0x032C2CB8
 A44: 53C Enter Clsfact::AddRef
 Object Address: 0x032C2CB8
 A44: 53C Exit Object Address: 0x032C2CB8 hr=2
...

In addition to the OLE DB interfaces, the trace facility collects the return value for
any method that is used during the OLE DB session, as shown in Example 7-22.

Example 7-22 Entry and exit points OLE DB trace

A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::AddRef
 A44: 53C Exit Object Address: 0x032CC370 hr=2
 A44: 53C Enter Datasrc::Release
 A44: 53C Exit Object Address: 0x032CC370 hr=1
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::XIDBProperties::SetProperties
 A44: 53C Exit Object Address: 0x032CC38C hr=0
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::XIDBProperties::SetProperties
 A44: 53C Exit Object Address: 0x032CC38C hr=0
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::XIDBInitialize::Initialize
 A44: 53C Exit Object Address: 0x032CC384 hr=0
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::XIDBProperties::GetProperties
 Chapter 7. Working with IBM Informix OLE DB Provider 249

 A44: 53C Exit Object Address: 0x032CC38C hr=0
 A44: 53C Enter Datasrc::QueryInterface
 A44: 53C Enter Datasrc::XIDBCreateSession::CreateSession

SQLIDEBUG
SQLI is the communication protocol used by Client SDK. SQLIDEBUG is a trace
facility of all the messages between an Informix client and an Informix database
server. This trace is common to all the Client SDK components (ESQL/C, ODBC,
OLE DB, and so on).

You can find a description and how to enable SQLIDEBUG in 3.3.6,
“Troubleshooting” on page 117.

When diagnosing a performance problem, sometimes it is useful to collect an
SQLIDEBUG trace to have an idea of where the delay occurs. Using the summary
option when processing the SQLIDEBUG file with sqliprint produces a detailed
description of all the messages between the client and server, as shown in
Example 7-23.

Example 7-23 Sqliprint summary output

>>>>>>>>>>>>>>>>>> SUMMARY INFORMATION <<<<<<<<<<<<<<<<<

>>>>>>>>>>TOTAL ELAPSED CLOCK TIME (sec): 0.047000

>>>>>>>>>>CLIENT ELAPSED CLOCK TIME (sec): 0.047000

>>>>>>>>>>SERVER+NETWORK CLOCK TIME (sec): 0.000000

FROM C->S
Msg occured Total Avg Min Max
--
SQ_PREPARE 1 0.000000 0.000000 0.000000 0.000000
SQ_ID 4
SQ_CLOSE 1
SQ_RELEASE 2
SQ_EOT 7
SQ_NDESCRIBE 1
SQ_SFETCH 1 0.000000 0.000000 0.000000 0.000000
SQ_WANTDONE 1
SQ_EXIT 1
SQ_INFO 1
SQ_RET_TYPE 1
SQ_INTERNALVER 1
SQ_PROTOCOLS 1
--

FROM S->C
Msg occured Total Avg Min Max
--
250 IBM Informix Developer’s Handbook

UNKNOWN 1
SQ_DESCRIBE 1 0.000000 0.000000 0.000000 0.000000
SQ_EOT 6
SQ_TUPLE 1
SQ_TUPID 1
SQ_PROTOCOLS 1
--

===
 COMMAND TEXT INFORMATION (first 99 are listed)
a(b) CMD[##]= ' first 60 bytes of cmd text '
where a = 'P'repare, or 'N'ot prepared, and b = length of command string

P(28) CMD[0]='SELECT rowid, * FROM state;'

===
 Fetch Array feature not used
 OPTOFC feture not used
 Number of open/reoptimzation encountered = 0
 Number of C->S message send = 22
 Number of S->C message send = 21

 Number of prepare statements encountered = 1
 Number of execute statements encountered = 0
 Number of singleton select encountered = 0
 Number of open cursor encountered = 0
 Number of close cursor encountered = 1

 Number of non-blob put = 0, averge size of each put is 0.000000
 Number of non-blob fetch = 1, averge size of each fetch is 25.000000
 Number of blob put = 0, averge size of each put is 0.000000
 Number of blob fetch = 0, averge size of each fetch is 0.000000

>>>>>>>>>>>>>>> END SUMMARY INFORMATION <<<<<<<<<<<<<<<
 Chapter 7. Working with IBM Informix OLE DB Provider 251

252 IBM Informix Developer’s Handbook

Chapter 8. Working with .NET data
providers

This chapter describes the .NET providers that are available for working with an
Informix database server. It includes the following topics:

� Informix and .NET data providers
� Setup and configuration
� Developing a .NET application
� Visual Studio Add-In for Visual Studio

8

© Copyright IBM Corp. 2010. All rights reserved. 253

8.1 Informix and .NET data providers

A .NET data provider is a .NET assembly that lets .NET applications access and
manipulate data in a database by implementing several interfaces that follow the
Microsoft ADO.NET architecture. Any application that can be executed by the
Microsoft .NET Framework can use a .NET data provider.

IBM provides the following .NET data providers to work with an IBM Informix
database:

� IBM Infomix .NET Provider
� IBM Data Server Provider for .NET

Both providers rely on internal calls to the ODBC and CLI drivers. They are not
100% managed-code providers.

8.2 Setup and configuration

This chapter describes the .NET providers that are available to connect to an
IBM Informix database. We explain how to configure and test the connectivity
with both Infomix .NET Provider and Data Server Provider for .NET.

8.2.1 IBM Informix .Net Provider

Informix .NET Provider is part of the Informix Client Software Development Kit
(Client SDK). Informix .NET Provider is certified to work on both 32-bit and 64-bit
editions of Windows XP, Windows Vista, Windows Server 2003, Windows Server
2008, and Windows 7.

The provider requires that Microsoft .NET Framework SDK 1.1 or higher is
already installed on the computer. The provider is installed by default when
performing a complete installation of Client SDK.

Informix .NET Provider supports the following Informix database servers:

� IBM Informix 10.00, 11.10, and 11.50
� IBM Informix Extended Parallel Server 8.50 and later

The assembly name of the Informix .NET Provider is IBM.Data.Informix.

The assembly files are located in the Client SDK directory. The provider for a
.NET 1.1 application is in the %INFORMIXDIR%\netf11 directory. For a .NET 2.0
and above, use the provider located in the %INFORMIXDIR\netf20 directory.
254 IBM Informix Developer’s Handbook

The installation process registers two strong-named assemblies in the global
assembly cache (GAC).

Table 8-1 shows Informix .NET Provider assembly versions.

Table 8-1 Informix .NET Provider assembly versions

The assemblies are registered in the common section of the GAC (GAC_MSIL).
Thus, only one version of the provider (32-bit or 64-bit) can be stored in the GAC
at a time.

8.2.2 IBM Data Server Provider for .NET

Data Server Provider for .NET is included in the IBM Data Server Package. The
provider supports multiple IBM data servers, including IBM Informix (11.x) and
DB2.

As with Informix .NET Provider, the Data Server Provider for .NET is not 100%
managed code. Thus, it requires the DB2 CLI component for communication with
the database.

The following Data Server providers for an Informix database are available:

� IBM.Data.DB2 is the preferred .NET provider when developing new
applications.

� IBM.Data.Informix is the .NET provider assembly that is normally used to
migrate an application that is developed using Informix .NET Provider.

The assembly files are located in the netf20 subdirectory under the Data Server
Client directory, which by default is C:\Program Files\IBM\IBM DATA SERVER
DRIVER\netf20.

.NET framework Assembly version

1.1 2.81.0.0

2.0 and above 3.0.0.2

Note: There is no 64-bit version of the .NET 1.1 Framework, so the .NET 1.1
Provider is not installed on a Windows 64-bit platform.

Note: The 64-bit version of the Data Server Client Package also includes the
32-bit drivers.
 Chapter 8. Working with .NET data providers 255

Both providers have the same assembly version, 9.0.0.2. Table 8-2 shows the
Data Server Provider for .NET assembly version.

Table 8-2 Data Server Provider for .NET assembly versions

8.2.3 Verifying connectivity

Informix .NET Provider uses communication libraries internally as do the other
drivers that are included in Client SDK. Thus, it uses the same connectivity
information that is normally stored in the registry through the use of the
setnet32.exe utility.

When there is no specific tool to verify the connectivity with Informix .NET
Provider, you can use a simple .NET application to test it.

The Microsoft .NET Framework SDK is required to use a .NET provider that
contains a .NET language compiler.

Example 8-1 shows a simple C code sample that verifies the connection with the
database server. This example takes the connection string as the first argument
and uses it to connect to the database.

Example 8-1 A connect.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class Connect
 {
 static void Main(string[] args)
 {
 IfxConnection conn;

 if (args.Length>0) {
 try {
 conn = new IfxConnection(args[0]);
 conn.Open();
 Console.WriteLine("Connected");
 Console.WriteLine(String.Format("Server Type: {0}, Server
Version: {1}", conn.ServerType, conn.ServerVersion));

.NET Provider Assembly version

IBM.Data.DB2 9.0.0.2

IBM.Data.Informix 9.0.0.2
256 IBM Informix Developer’s Handbook

 Console.WriteLine(String.Format("Database: {0}",
conn.Database));
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
 else
 Console.WriteLine("Need a connection string as argument\n e.g:
\"Host=kodiak;Service=9088;Server=demo_on;Database=stores_demo;User
ID=informix;password=;\"\n");

}
}

Example 8-2 shows how to compile and run Example 8-1 on page 256.

Example 8-2 Output of the connect.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.informix.dll /nologo
connect.cs
C:\work>connect "Server=demo_on;Database=stores_demo"
Connected
Server Type: Informix, Server Version: 11.50.0000 FC6
Database: stores_demo

C:\work>

If the connection information for the Informix server is stored in the registry, the
only parameter that is required in the connection string is the name of the
database server. The remainder of the information, such as Host or Service, is
taken from the registry.

At compile time, you must pass the assembly as a reference to the csc.exe
compiler using the /R parameter. For example:

/R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll

If you want to use the Data Server provider, the reference path is as follows:

/R:”C:\Program Files (x86)\IBM\IBM DATA SERVER DRIVER\bin\netf20\IBM.Data.Informix.dll”
 Chapter 8. Working with .NET data providers 257

Example 8-3 shows how to compile and execute the sample with Data Server
Provider for .NET.

Example 8-3 Data Server connect.cs sample

C:\work>csc.exe /R:"C:\Program Files (x86)\IBM\IBM DATA SERVER
DRIVER\bin\netf20\IBM.Data.Informix.dll" /nologo connect.cs

C:\work>connect "Server=kodiak:9089;Database=stores_demo;User
ID=informix;password=password;"
Connected
Server Type: IDS/NT64, Server Version: 11.50.0000
Database: STORES_DEMO

C:\work>

Data Server Provider for .NET includes a connection tool called testconn20.exe
that you can use to test the connection with the database. Example 8-4 shows a
typical output of the testconn20.exe utility.

Example 8-4 Output of the testconn20.exe utility

C:\work>testconn20.exe "server=kodiak:9089; database=stores_demo; uid=informix;
pwd=password;"

Step 1: Printing version info
 .NET Framework version: 2.0.50727.3603
 DB2 .NET provider version: 9.0.0.2
 DB2 .NET file version: 9.7.2.2
 Capability bits: ALLDEFINED
 Build: 20100514
 Factory for invariant name IBM.Data.DB2 verified
 VSAI assembly version: 9.1.0.0
 VSAI file version: 9.7.1.53
 Elapsed: 1.015625

Step 2: Validating db2dsdriver.cfg against db2dsdriver.xsd schema file
 C:\PROGRA~1\IBM\IBMDAT~2\cfg\db2dsdriver.cfg against C:\Program
Files\IBM\IBM DATA SERVER DRIVER\cfg\db2dsdriver.xsd
 Elapsed: 0.015625

Step 3: Connecting using "server=kodiak:9089; database=stores_demo;
uid=informix; pwd=password;"
 Server type and version: IDS 11.50.0000
 Elapsed: 0.46875

Step 4: Selecting rows from informix.systables to validate existance of
packages
 SELECT * FROM informix.systables
258 IBM Informix Developer’s Handbook

 Elapsed: 0.171875

Step 5: Calling GetSchema for tables to validate existance of schema functions
 Elapsed: 0.21875

Test passed.

C:\work>

8.3 Developing a .NET application

This section describes the connection string attributes for two Informix .NET
providers and provides samples of basic database operations.

8.3.1 Connecting to the database

In this section, we describe the connection string attributes for Informix .NET
Provider and Data Server Provider for .NET

Informix .NET Provider connection attributes
Table 8-3 lists the connection attributes that Informix .NET Provider supports.

Table 8-3 Informix .NET Provider connection string attributes

Attribute Description Default

Client Locale,
Client_Locale

Locale used on the application en_us.1252

Connection Lifetime Time in seconds that a connection is
allowed in the pool

0

Database, DB Database to connect to

Database Locale,
DB_LOCALE

Locale of the database en_US.819

DELIMIDENT If set, any string within double quotes (")
is treated as an identifier, and any string
within single quotes (’) is treated as a
string literal

y

Enlist Enables or disables automatic enlistment
in a distributed transaction

true
 Chapter 8. Working with .NET data providers 259

Exclusive, XCL if set the database is open in exclusive
mode

No

Host Name or IP address of the system on
which the Informix server is running

localhost

Max Pool Size Maximum number of connections
allowed in the pool

100

Min Pool Size Minimum number of connections allowed
in the pool

0

Optimize OpenFetchClose,
OPTOFC

Reduces the number of client-server
messages when using cursors

0

Packet Size, Fetch Buffer
Size, FBS

Size in bytes of the buffers used to send
data to or from the server

32767

Password, PWD Password associated with the User ID

Persist Security Info If set the security-sensitive information,
such as the password, is returned as part
of the connection string

false

Pooling Enable Connection Pooling true

Protocol, PRO Communication protocol

Server Name or alias of the Informix server

Service Service name or port number used by the
server for incoming connection

Skip Parsing If set, there is no internal SQL parsing it
increases performance but the SQL must
be valid

false

UserDefinedTypeFormat Changes the mapping of UDTs to either
DbType.String or DbType.Binary

Leave Trailing Spaces If set, disable the automatic trailing of
spaces done in a varchar column

false

User ID, UID Login account.

Attribute Description Default
260 IBM Informix Developer’s Handbook

Data Server Provider for .NET connection attributes
Table 8-4 lists the most common connection attributes that Data Server Provider
for .NET uses.

Table 8-4 Data Server Provider for .NET connection string attributes

The configuration parameters for Data Server Provider for .NET and most of the
components are stored in the db2sdriver.cfg file. For a complete list of the
configuration parameters in this file, refer to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbcli
ent.config.doc/doc/c0054698.html

If the connection string does not contain all the required information, the provider
takes the missing arguments from the db2sdriver.cfg configuration file.

Attribute Description Default Value

ConnectTimeout,
Connect Timeout

The time (in seconds) to wait for the
database connection to be established.

0

Connection Lifetime Time in seconds that a connection is
allowed in the pool.

60

Database, DB Database to connect to.

Enlist Enables or disables automatic enlistment
in a distributed transaction.

true

Max Pool Size Maximum number of connections
allowed in the pool.

0

Min Pool Size Minimum number of connections allowed
in the pool.

0

Password, PWD Password associated with the User ID

Persist Security Info If set the security-sensitive information,
such as the password, is returned as part
of the connection string.

false

Pooling Enable Connection Pooling within the
.NET Provider

true

Query Timeout Time to wait for an SQL query response 5

Server Name or alias of the Informix server
followed by service name or the port
number

User ID, UID Login account
 Chapter 8. Working with .NET data providers 261

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbclient.config.doc/doc/c0054698.html

The majority of the connection string attributes of Data Server Provider for .NET
have similar meanings and format as Informix .NET Provider string attributes
except the Server attribute.

For Informix .NET Provider, the Server keyword contains the name (or alias) of
the Informix server, which is normally the same as the value of the
INFORMIXSERVER variable.

For Data Server Provider for .NET, the Server keyword contains the host name
where the Informix server is running and the service name or port number that is
used to listen for DRDA client connections.

Example 8-5 shows the Server attribute format. In this example, we connect to
an Informix database server that is running in a system named kodiak.ibm.com.
The Informix server DRDA alias is using the port number 9089.

Example 8-5 Server attribute for the Data Server Provider for .NET

C:\work>connect
"Server=kodiak.ibm.com:9089;Database=stores_demo;UID=informix;password=password
;"
Connected
Server Type: IDS/NT64, Server Version: 11.50.0000
Database: STORES_DEMO

C:\work>

8.3.2 Data type mapping

The data types that are used by the .NET Framework differ from the data types
that are used by the IBM Informix database. In this section, we describe the
optimal data types to use when accessing data in an Informix database. The
optimal data type depends on the .NET method that is used to access the data.

You can use types other than those that we describe here. For example, you can
use the IfxDataReader.GetString method to obtain any Informix data type. The
types that we mention here are the most efficient and least likely to change in
value in data conversion.
262 IBM Informix Developer’s Handbook

Informix .NET type mapping
Table 8-5 shows the mapping for the specific IBM Informix data types.

Table 8-5 Type mapping for Informix specific data

Informix data type For data reader For data set

BIGINT Int64 Int64

BIGSERIAL Int64 Int64

BLOB IfxBlob Byte[]

BOOLEAN Boolean Boolean

BYTE Byte[] Byte[]

CLOB IfxClob Byte[]

COMPLEX (ROW, LIST) String String

DECIMAL(p<=28) fixed scale IfxDecimal Decimal

DECIMAL(p<=28) floating point IfxDecimal Double

DECIMAL (p>28) IfxDecimal String

IDSSECURITYLABEL Int64[] Int64[]

INT8 Int64 Int64

INTERVAL, year-month IfxMonthSpan String

INTERVAL, day-fraction IfxTimeSpan TimeSpan

LVARCHAR String String

MONEY IfxDecimal Decimal with same precision

NCHAR String String

SERIAL nt32 Int32

SERIAL8 Int64 Int64

TEXT String String
 Chapter 8. Working with .NET data providers 263

Data Server Provider for .NET type mapping
Table 8-6 shows the type mapping with the Data Server Provider for .NET when
using specific Informix data types.

Table 8-6 Type mapping for Informix specific data

8.3.3 Performing database operations

This section describes the main classes in the Informix .NET Provider and
demonstrates how to use these classes with basic examples.

IfxConnection
The IfxConnection object represents a unique connection with the database
server. You can specify the connectivity details about the database when creating
the connection object or by setting the ConnectionString property later.

Because Informix .NET Provider uses native resources (that are not managed by
the .NET CLR), always close or dispose any open IfxConnection class when it is
not longer needed.

Informix data type Optimal for data reader Optimal for data set

LVARCHAR IfxString String

BLOB, BYTE IfxBlob Byte[]

CLOB, TEXT IfxClob String

BOOLEAN, SMALLINT IfxInt16 Int16

BIGINT, BIGSERIAL, INT8,
SERIAL8

IfxInt64 Int64

DECIMAL(p<=28) fixed scale IfxDecimal Decimal

DECIMAL(p<=28) floating point IfxDouble Double

DECIMAL (p>28) IfxDouble Double

MONEY IfxDecimal Decimal
264 IBM Informix Developer’s Handbook

Table 8-7 lists the public method of the IfxConnection class.

Table 8-7 IfxConnection public methods

We described the connection string attributes in 8.3.1, “Connecting to the
database” on page 259. Example 8-6 demonstrates how to connect to the
database

Example 8-6 The connect_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;

 try {
 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();
 Console.WriteLine("Connected to "+conn.Database);
 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }

}
}

Method Description

void Open() Opens a database connection

void Close() Closes the connection to the database

void ChangeDatabase(String) Changes the current database

void EnlistTransaction() Enlists the connection in a DTC transaction

IfxTransaction BeginTransaction()
BeginTransaction(IsolationLevel)

Begins a database transaction

IfxCommand CreateCommand() Creates an instance of an IfxCommand object that
is associated with this IfxConnection

IfxBlob GetIfxBlob() Creates an instance of an IfxBlob object that is
associated with this connection

IfxClob GetIfxClob() Creates an instance of an IfxClob object that is
associated with this connection
 Chapter 8. Working with .NET data providers 265

Example 8-7 shows the output of Example 8-6.

Example 8-7 Output of the connect_sample.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
connect_sample.cs

C:\work>connect_sample
Connected to stores_demo

C:\work>

IfxCommand
The IfxCommand object represents an SQL statement or stored procedure to
execute against a database server.

Table 8-8 shows methods that the IfxCommand class provides for executing an
SQL statement.

Table 8-8 IfxCommand public methods

Method Description

Int32 ExecuteNonQuery() Executes an SQL statement against the
IfxConnection object

IfxDataReader ExecuteReader()
ExecuteReader(DataCommandBehavior
behavior)

Executes the command in the
CommandText property against the
IfxConnection object and builds an
IfxDataReader object

Object ExecuteScalar() Executes the query, and returns the first
column of the first row

void Cancel() Attempts to cancel the execution of a
command

IfxParameter CreateParameter() Creates a new instance of an
IfxParameter object

void Prepare() Creates a prepared (or compiled) version
of the command against the database
266 IBM Informix Developer’s Handbook

Example 8-8 demonstrates how to run a simple DELETE SQL statement.

Example 8-8 The command_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 int drows=0;

 try {
 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "DELETE FROM customer WHERE customer_num = 103";
 drows = cmmd.ExecuteNonQuery();
 Console.WriteLine("Deleted rows: "+drows.ToString());
 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

Example 8-9 shows the output of Example 8-8.

Example 8-9 Output of the command_sample.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
command_sample.cs

C:\work>command_sample
Deleted rows: 1

C:\work>

IfxDataAdapter
The IfxDataAdapter class represents a set of data commands that are used to
communicate between a data set and the database. A data set is a copy of the
database data that is stored in memory.
 Chapter 8. Working with .NET data providers 267

Table 8-9 lists the methods that the IfxDataAdapter class provides for accessing
the data.

Table 8-9 IfxDataAdapter public methods

Example 8-10 demonstrates how to retrieve data from the database using the
IfxDataAdapter class. In this example, we retrieve the data rows directly from the
data set.

Example 8-10 The dataadapter_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;

 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM state WHERE code='CA'";

 IfxDataAdapter dadap = new IfxDataAdapter();
 DataSet dset = new DataSet();
 dadap.SelectCommand = cmmd;
 dadap.Fill(dset);

 foreach(DataRow dr in dset.Tables[0].Rows) {
 Console.WriteLine(String.Format("\tCode\tState\n"));
 Console.WriteLine(String.Format("\t{0}\t{1}", dr["code"], dr["sname"]));

Method Description

Int32 Fill(DataSet) Adds or refreshes rows in the data set

DataTable FillSchema(DataSet,
SchemaType)

Adds a data table to the data set, and
configures the schema to match that in the
database based on the specified SchemaType

IDataParameter
GetFillParameters()

Returns the parameters set by the user when
executing a SELECT statement

Int32 Update(DataSet) Executes the SQL statement that is associated
with the InsertCommand, UpdateCommand, or
DeleteCommand for each inserted, updated, or
deleted row in the specified data set
268 IBM Informix Developer’s Handbook

 }

 conn.Close();

 }
}

Example 8-11 shows the data that is returned by the data set object.

Example 8-11 Output of the dataadapter_sample.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
dataadapter_sample.cs

C:\work>dataadapter_sample.exe
 Code State

 CA California

C:\work>

IfxDataReader
The IfxDataReader class provides fast read-only, forward-only access to a set of
rows, similar to SQL cursors data. To create an IfxDataReader object, the
application calls the ExecuteReader() method of the IfxCommand object.

The IfxDataReader class is a part of the System.Data.Common.DbDataReader. It
provides all common DbDataReader methods as well as additional methods to
handle Informix specific data types.

Table 8-10 contains the additional public methods of the IfxDataReader class.

Table 8-10 Additional methods of IfxDataReader

Method Description

Boolean GetBoolean() Gets the value of the specified column as a Boolean

TimeSpan GetTimeSpan() Gets the time span value of the specified field

IfxBlob GetIfxBlob() Gets the IfxBlob value of the specific field

IfxClob GetIfxClob() Gets the IfxClob value of the specific field

IfxDateTime GetIfxDateTime() Gets the IfxDateTime value of the specific field

IfxDecimal GetIfxDecimal Gets the GetIfxDecimal value of the specific field
 Chapter 8. Working with .NET data providers 269

Refer to IBM Informix .NET Provider Reference Guide for a complete list of all the
IfxDataReader public methods:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.netpr.doc/n
etpr031023156.htm#netpr031023156

Example 8-12 demonstrates how to use a IfxDataReader class to access a
database table.

Example 8-12 The datareader_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;

 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM state WHERE code='CA'";

 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 while (drdr.Read()) {
 Console.WriteLine(String.Format("\tCode\tState\n"));
 Console.Write(String.Format("\t{0}", drdr.GetString(0)));
 Console.WriteLine(String.Format("\t{0}", drdr.GetString(1)));
 }

 drdr.Close();
 conn.Close();

IfxMonthSpan GetIfxMonthSpan Gets the IfxMonthSpan value of the specific field

IfxTimeSpan GetIfxTimeSpan Gets the IfxTimeSpan value of the specific field

Note: Even if the IfxDataReader.Read() method returns only one row each
time it is called, the provider can retrieve more than one row from the
database. Informix .NET Provider does this to increase performance. The
application can set the number of rows that the provider fetches from the
database using the IfxCommand class RowFetchCount property.

Method Description
270 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.netpr.doc/netpr031023156.htm#netpr031023156

 }
}

Example 8-13 shows the output of Example 8-12 on page 270.

Example 8-13 Output of the datareader_sample.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
datareader_sample.cs

C:\work>datareader_sample.exe
 Code State

 CA California

C:\work>

IfxError
The IfxError class collects information that is relevant to a warning or error that
the database returns. You can use the IfxError and IfxErrorCollection
classes to retrieve additional information when an error occurs.

An application can access this information using the properties of the IfxError
object listed in Table 8-11.

Table 8-11 IfxError properties

Example 8-14 demonstrates a typical use of the IfxError class. The
IfxException class contains one or more IfxError objects.

Example 8-14 The error_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class Connect {
 static void Main(string[] args) {

 IfxConnection conn;

Property Type Description

Message String Text message

NativeError Int32 IBM Informix error code

SQLState String ANSI SQL error code
 Chapter 8. Working with .NET data providers 271

 int drows=0;

 try {
 conn = new IfxConnection("Server=demo_on;database=wrong_db");
 conn.Open();
 Console.WriteLine("Connected");
 conn.Close();
 }
 catch (IfxException e) {

 Console.WriteLine("----------------------------");
 if (e.Errors.Count > 0) {

 IfxError ifxErr = e.Errors[0];
 Console.WriteLine("Message :" + ifxErr.Message);
 Console.WriteLine("Native error :" + ifxErr.NativeError);
 Console.WriteLine("SQL state :" + ifxErr.SQLState);
 }
 Console.WriteLine(e.StackTrace);
 Console.WriteLine("----------------------------");
 }
 }
}

IfxParameter
The IfxParameter class is used to pass parameters to the IfxCommand method.
IfxParameter classes are stored as a collection in a IfxParameterCollection
object.

Table 8-12 contains the public attributes of an IfxParameter object.

Table 8-12 IfxParameter attributes

Property Type Description

DbType DbType Defines the DbType of the parameter

Direction ParameterDirection Defines the direction of the parameter
(Input, Output, or both)

IfxType IfxType Defines the IfxType class of the
parameter

IsNullable Boolean Specifies whether the parameter is
allowed to be null

ParameterName String Name of the parameter, which is a unique
reference in the parameter collection
272 IBM Informix Developer’s Handbook

Example 8-15 shows how to use IfxParameter class to perform an UPDATE
operation.

Example 8-15 The parameter_sample.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 int urows=0;

 try {
 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "UPDATE state SET sname = ? where code = ?";
 IfxParameter pcode = new IfxParameter(“code”, DbType.String);
 IfxParameter psname = new IfxParameter(“sname”, DbType.String);

 pcode.Value="CA";
 psname.Value="CALIFORNIA";
 cmmd.Parameters.Add(psname);
 cmmd.Parameters.Add(pcode);

 urows = cmmd.ExecuteNonQuery();
 Console.WriteLine("Updated rows: "+urows.ToString());

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

SourceColumn String Specifies the column that is mapped to
the data set

SourceVersion DataRowVersion Defines the DataRowVersion to use when
you load Value

Value Object Defines the value of the parameter

Property Type Description
 Chapter 8. Working with .NET data providers 273

Example 8-16 shows the output of Example 8-15 on page 273.

Example 8-16 Output of the parameter_sample.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
parameter_sample.cs

C:\work>parameter_sample.exe
Updated rows: 1

C:\work>

IfxTransaction
The IfxTransaction class represents an SQL transaction to be made at a
database. The application creates an transaction by calling the
BeginTransaction method of the IfxConnection object.

The IfxConnection.BeginTransaction() method returns an IfxTransaction
object. When the application decides how to resolve the transaction, it uses the
Commit and Rollback methods of the IfxTransaction object.

Any IfxCommand that is involved in a transaction must have the transaction
property set to the IfxTransaction object.

Example 8-17 demonstrates how to create a transaction.

Example 8-17 Creating a transaction using the IfxTransaction class

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 int drows=0;

 try {
 conn = new IfxConnection("Server=demo_on;database=stores_demo");
 conn.Open();

 IfxTransaction trans = conn.BeginTransaction();

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.Transaction = trans;
 cmmd.CommandText = "DROP TABLE state";
 drows = cmmd.ExecuteNonQuery();
274 IBM Informix Developer’s Handbook

 trans.Rollback();
 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

You can specify the following isolation levels with the BeginTransaction()
method:

� ReadUncommitted
� ReadCommitted
� RepeatableRead
� Serializable

The default Isolation level is ReadCommited.

Example 8-18 demonstrates how to run a distributed transaction.

Example 8-18 The transact_cts.cs sample

using System;
using System.Data;
using IBM.Data.Informix;
using System.Transactions;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;

 try {
 conn = new IfxConnection("Server=demo_on;database=stores_demo");

 // Transaction options
 TransactionOptions tsopt = new TransactionOptions();
 tsopt.IsolationLevel =
 System.Transactions.IsolationLevel.RepeatableRead;
 tsopt.Timeout = new TimeSpan(0, 60, 0);

 using (TransactionScope tscope = new TransactionScope(
 TransactionScopeOption.RequiresNew, tsopt,
 EnterpriseServicesInteropOption.Full))
 {

 conn.Open();
 Chapter 8. Working with .NET data providers 275

 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "DROP TABLE state";
 cmmd.ExecuteNonQuery();

 // Rollback the distributed transaction not calling Complete()
 // tscope.Complete();
 }
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

8.3.4 Handling Informix specific data types

In this section, we discuss how to work with IBM Informix specific data types
such as smart large objects or decimal using Informix .NET Provider.

IfxBlob and IfxClob
CLOB and BLOB are Informix data types that are used to store large amounts of
character or binary data.The application handles these smart large objects using
the IfxClob and IfxBlob classes.

The method that is implemented on these classes allows random access of its
contents. The application can read or write to certain positions in the large object
without reading or writing through all of the data up to that position.

BLOBs and CLOBs are both smart large object type. Both types share many of
the same methods. BLOBs differ from CLOBs in that the data in a CLOB is
treated as text characters but the data in a BLOB is not. The data in a BLOB is
considered to be binary data, and no translation or conversion of any kind is
performed on it when it is moved to or from the database server.

Properties and methods
Table 8-13 lists the IfxBlob and IfxClob public properties.

Table 8-13 Properties of IfxBlob and IfxClob

Property Type Description

EstimatedSize Int64 Estimates final size of the large object

ExtentSize Int32 Finds the next extent size for this large object (disk
space)
276 IBM Informix Developer’s Handbook

Table 8-14 lists the available public methods from the IfxClob and IfxBlob
classes.

Table 8-14 Public methods of IfxClob and IfxBlob

Flags Int32 Flags for this large object

IsNull Boolean Determines whether the large object is NULL

IsOpen Boolean Determines whether the large object is open

LastAccessTime Int32 Determines the last time that the large object was
accessed

LastChangeTime Int32 Determines the last time that the status was
changed

LastModificationTime Int32 Determines the last time that the large object was
modified

MaxBytes Int64 Defines the maximum size for the large object

Position Int64 Defines the current position on the large object

ReferenceCount Int32 Provides the number of records in the database
that currently contain a reference to this large
object

SBSpace String Defines the Sbspace in which the large object is
stored

Size Int64 Defines the size of the large object in bytes

Method Description

void Open(mode) Opens a large object in a specific mode

IfxSmartLOBLocator GetLocator() Returns the IfxSmartLOBLocator that is
associated with this instance

Int64 Read(buff), Read(buff,
buffOffset, numBytesToRead,
sLOBOffset, whence)

Reads the complete data or a portion of a
large object as a Byte[] or Char[]

Int64 Write(buff), Write(buff,
buffOffset, numBytesToWrite,
sLOBOffset, whence)

Writes the complete buffer or a portion into
a large object

void Truncate(offset) Truncates everything in the large object
past the position offset

Property Type Description
 Chapter 8. Working with .NET data providers 277

Creating a smart large object
You can use the GetIfxClob() and GetIfxBlob() methods of the
IfxConnection() object to create a large object. To create a large object:

1. Create an instance of a the large object, IfxClob or IfxBlob.

2. Open the large object.

3. Write data into the large object.

4. Execute the SQL Statement using the IfxClob or IfxBlob classes as a
parameter for the statement.

5. Close the large object.

Example 8-19 demonstrates how to update a CLOB column. The code reads a
text file, sample_blob.cs, and uses the contents for the CLOB data.

Example 8-19 The lo_create.cs sample

using System;
using System.IO;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 int urows=0;
 IfxClob vclob;
 char[] vclobBuff;

Int64 Seek(offset, whence) Changes the current position within the
large object

void FromFile(filename, appendTosLOB,
fileLocation)

Reads an operating system file and writes
the complete content into the large object.

String ToFile(filename, mode,
fileLocation)

Writes the contents of the large object to
an operating system file

void Lock(sLOBOffset, whence, range,
lockMode)

Locks the complete large object or only a
portion of the large object

void Unlock(sLOBOffset, whence,
range)

Unlocks a large object

void Release() Frees database server resources

void Close() Closes the large object

Method Description
278 IBM Informix Developer’s Handbook

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Create and Open the Clob
 vclob = conn.GetIfxClob();
 vclob.Open(IfxSmartLOBOpenMode.ReadWrite);

// Read a text file and insert into the clob
 vclobBuff = File.ReadAllText("lo_create.cs").ToCharArray();
 vclob.Write(vclobBuff);

// Create the UPDATE Ifxcommand
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "UPDATE catalog set advert_descr = ? WHERE" +
 " catalog_num = ?;";

// Bind the IfxClob value and execute the UPDATE statement
 IfxParameter padvt_desc = new IfxParameter(null, vclob);
 IfxParameter pcatalog_n = new IfxParameter(null, "10072");
 cmmd.Parameters.Add(padvt_desc);
 cmmd.Parameters.Add(pcatalog_n);
 urows = cmmd.ExecuteNonQuery();

 Console.WriteLine("Updated rows: "+urows.ToString());

// Close the IfxClob object
 vclob.Close();
 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

If the application requires more control over the smart large object, it can use the
specific properties of the ifxClob and IfxBlob classes to set up values, such as
in which smart BLOB space the large object should create or the maximum size.

Example 8-20 Illustrates how to use the properties of the IfxBlob class.

Example 8-20 Large object extended properties

...
// Create and Open the Clob
 vclob = conn.GetIfxClob();
 vclob.EstimatedSize = 5000;
 vclob.ExtentSize = 1000;
 vclob.Flags = (int) IfxSmartLOBCreateTimeFlags.DontKeepAccessTime |
 Chapter 8. Working with .NET data providers 279

 (int) IfxSmartLOBCreateTimeFlags.NoLog;
 vclob.MaxBytes = 10000;
 vclob.SBSpace = "sbspace";
 vclob.Open(IfxSmartLOBOpenMode.ReadWrite);
...

Selecting a smart large object
Reading a large object using the large object extensions requires the following
steps:

1. Execute the SQL statement, and retrieve the large object column.
2. Open the large object.
3. Read from the large object into an application buffer.
4. Close the large object.

Example 8-21 shows how to read a large object column from a database table.

Example 8-21 The lo_select.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 IfxClob vclob;
 int maxSize = 2000;
 char[] vclobBuff = new char[maxSize];

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Select the large object from the database
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM catalog WHERE catalog_num = 10072";
 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 while (drdr.Read()) {

// Get the large object. The clob is the 6th column
 vclob = drdr.GetIfxClob(5);

// Open the large object
 vclob.Open(IfxSmartLOBOpenMode.ReadOnly);
 vclob.Read(vclobBuff, 0, maxSize, 0, IfxSmartLOBWhence.Current);
280 IBM Informix Developer’s Handbook

 Console.WriteLine(vclobBuff);

// Close the large object
 vclob.Close();
 }

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

Random access
One of the benefits of smart large objects over a normal large object is the option
of reading partial data.

The Read(buff, buffOffset, BytesToRead, loOffset, whence) method allows
you to position the data pointer anywhere in the large object data and read from
there.

Example 8-22 shows how to read the last 10 bytes of a large object.

Example 8-22 Partial large object read

...
// Read only the last 10 bytes of large object
 int bytesToRead = 10;
 vclob.Read(vclobBuff, 0, bytesToRead, (-1) * bytesToRead,
 IfxSmartLOBWhence.End);
...

Smart large objects support random I/O access. Using the Seek(offset,
whence) method, you can position the data pointer anywhere in the large object
and perform I/O operations with the data.

Example 8-23 demonstrates how to update only a portion of a large object using
the Seek() method.

Example 8-23 A lo_seek.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {
 Chapter 8. Working with .NET data providers 281

 IfxConnection conn;
 IfxClob vclob;
 int urows=0;
 int maxSize = 100;
 char[] vclobBuff = new char[maxSize];

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Select the large object from the database
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM catalog WHERE catalog_num = 10072";
 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 drdr.Read();

// Get the large object. The clob is the 6th column
 vclob = drdr.GetIfxClob(5);

// Open the large object
 vclob.Open(IfxSmartLOBOpenMode.ReadWrite);

// Move the pointer 15 bytes from the beginning of the large object.
 vclob.Seek(15,IfxSmartLOBWhence.Begin);

// Update the large object.
 vclobBuff="//------------//".ToCharArray();
 vclob.Write(vclobBuff);
 drdr.Close();

// Update the column in the table
 cmmd.CommandText = "UPDATE catalog set advert_descr = ? WHERE" +
 " catalog_num = ?;";

// Bind the IfxClob value and execute the UPDATE statement
 IfxParameter padvt_desc = new IfxParameter(null, vclob);
 IfxParameter pcatalog_num = new IfxParameter(null, "10072");
 cmmd.Parameters.Add(padvt_desc);
 cmmd.Parameters.Add(pcatalog_num);
 urows = cmmd.ExecuteNonQuery();

 Console.WriteLine("Updated rows: "+urows.ToString());

// Close the large object
 vclob.Close();

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

Note: Data Server Provider for .NET does not support random I/O access.
282 IBM Informix Developer’s Handbook

IfxDateTime
The IfxDateTime class represents the Informix DATETIME data type. The
IfxDateTime class provides support for all the precisions that are allowed in an
Informix DATETIME.

The Informix DATETIME data type is composed of the following time units:

� Year
� Month
� Day
� Hour
� Minute
� Second
� Fractions of a second

In an Informix database, the maximum precision for a DATETIME column is YEAR
TO FRACTION(5). A DATETIME column can be defined with any precision, from a
year to fraction of a second allowing any subset of these units.

Table 8-15 lists the public properties of the IfxDateTime class.

Table 8-15 Public properties of the IfxDateTime class

Property Type Description

Date IfxDateTime A Year to Day IfxDateTime instance

Day Int32 The day portion of the value

EndTimeUnit IfxTimeUnit The end time unit of the instance

Hour Int32 The hour portion of the value

MaxValue IfxDateTime Maximum value allowed for this IfxDateTime

Millisecond Int32 Millisecond unit in this IfxDateTime

MinValue IfxDateTime Smallest value allowed for this IfxDateTime

Minute Int32 Minute unit in this IfxDateTime

Month Int32 Month unit in this ifxDateTime

Now IfxDateTime Current date with a range of Year to Fraction (5)

Second Int32 Second unit of this IfxDateTime

StartTimeUnit IfxTimeUnit Start time unit of this IfxDateTime

Ticks Int64 Ticks from midnight on 1 Jan 0001

Today IfxDateTime Current time with a range of Year to Day
 Chapter 8. Working with .NET data providers 283

Table 8-16 lists the public methods of the IfxDateTime class.

Table 8-16 Public methods of the IfxDateTime class

Year Int32 Year unit of the value

Method Description

Add(IfxTimeSpan or IfxMonthSpan) Current value plus by object passed

AddDays(days) Current value plus days passed

AddMilliseconds(milliseconds) Current value plus milliseconds passed

AddMinutes(minutes) Current value plus minutes passed

AddMonths(months) Current value plus months passed

AddSeconds(seconds) Current value plus seconds passed

AddYears(years) Current value plus years passed

Compare(ifxDT1, ifxDT1) Compare two IfxDateTime instances

CompareTo(obj) Compare two IfxDateTime instances

DaysInMonth(year, month) Number of days in the month of the year

Equals(ifxDT1, ifxDT2) True if ifxDT1 is equal to ifxDT2

GreaterThan(ifxDT1, ifxDT2) True if ifxDT1 is later than ifxDT2

GreaterThanOrEqual(ifxDT1,
ifxDT2)

True if ifxDT1 is later or equal than ifxDT2

LessThan(ifxDT1, ifxDT2) True if ifxDT1 is earlier than ifxDT2

LessThanOrEqual(ifxDT1, ifxDT2) True if ifxDT1 is earlier or equal than ifxDT2

NotEquals(ifxDT1, ifxDT2) True if ifxDT1 is different than ifxDT2

Parse(dateTimeStr)
Parse(dateTimeStr, start, end)
Parse(dateTimeStr, format, start,
end)

New IfxDateTime with a value based on
dateTimeStr

ToString(), ToString (format) Value of the instance as a string

Property Type Description
284 IBM Informix Developer’s Handbook

To access a DATETIME column in the database, the application uses the
IfxGetDateTime() method from the IfxDataReader() object.

Example 8-24 demonstrates how to select a DATETIME data type from a table.

Example 8-24 The datetime.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 IfxDateTime vdtime;

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Select the datetime from the database
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM cust_calls WHERE "
 + "customer_num = 106";
 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 drdr.Read();

// Get the IfxDateTime from the recordset, 2nd columnd
 vdtime = drdr.GetIfxDateTime(1);
 Console.WriteLine("Call:\t"+vdtime);
 Console.WriteLine("Hour :\t "+vdtime.Hour);
 Console.WriteLine("Minute:\t"+vdtime.Minute);

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

Example 8-25 shows the Hour and Minute units extracted from the IfxDateTime
object.

Example 8-25 Output of the datetime.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /nologo
datetime.cs

C:\work>datetime
Call: 2008-06-12 08:20
 Chapter 8. Working with .NET data providers 285

Hour : 8
Minute: 20

C:\work>c

Arithmetic operations between two IfxDateTime objects might return an
lfxDateSpan() object or an IfxMonthSpan() object, depending on the precision
that is used by the IfxDateTime objects.

Example 8-26 shows the use of the IfxDateSpan() class.

Example 8-26 The datetime2.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 IfxDateTime vdtime,vrestime;
 IfxTimeSpan vtimetaken;

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Select the datetime from the database
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM cust_calls WHERE "
 + "customer_num = 106";
 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 drdr.Read();

// Get the IfxDateTime from the recordset
 vdtime = drdr.GetIfxDateTime(1);
 vrestime = drdr.GetIfxDateTime(5);

// Stores the difference in an IfxTimeSpan object.
 vtimetaken=vrestime-vdtime;
 Console.WriteLine("Initiated at:\t"+vdtime);
 Console.WriteLine("Resolved at:\t"+vrestime);
 Console.WriteLine("Minutes taken:\t"+vtimetaken.Minutes);

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

286 IBM Informix Developer’s Handbook

IfxDecimal
An IfxDecimal object represents the Informix decimal data type. The DECIMAL
data type on an Informix database can take two forms:

� DECIMAL(p) floating point
� DECIMAL(p,s) fixed point

The IfxDecimal object in Informix .NET Provider supports both versions.

Table 8-17 contains the description of the public properties of an IfxDecimal
object.

Table 8-17 Public properties of the IfxDecimal class

Table 8-18 contains the description for the IfxDecimal public methods.

Table 8-18 Public methods of the IfxDecimal object

Property Type Description

E IfxDecimal Irrational number e

IsFloating Boolean Whether it is a floating number

IsNull Boolean Whether it is NULL

IsPositive Boolean Whether it is positive

MaxPrecision Byte Maximum precision supported (32)

MaxValue IfxDecimal Largest value allowed

MinusOne IfxDecimal -1

MinValue IfxDecimal Smallest value allowed

Null IfxDecimal Null

One IfxDecimal 1

Pi IfxDecimal Irrational number pi

Zero IfxDecimal 0

Method Description

Abs(IfxDec) Absolute value of IfxDec

Add(IfxDec1, IfxDec2) Sum of IfxDec1 and IfxDec2

Ceiling(IfxDec) Smallest integer that is not less than IfxDec

Clone() Creates a duplicate of this instance
 Chapter 8. Working with .NET data providers 287

Compare(IfxDec1, IfxDec2) Compares two IfxDecimal values

CompareTo(obj) Compares current instance with object

Divide(Dividend, Divisor) Dividing result for Dividend by Divisor

Equals(obj) Equal

Equals(IfxDec1, IfxDec2) True if IfxDec1 is the same as IfxDec2

Floor(IfxDec) Largest integer not larger than IfxDec

GreaterThan(IfxDec1, IfxDec2) True if IfxDec1 > IfxDec2

GreaterThanOrEqual(IfxDec1,IfxDe
c2)

True if IfxDec1 >= IfxDec2

LessThan(IfxDec1, IfxDec2) True if IfxDec1 < IfxDec2

LessThanOrEqual(IfxDec1,
IfxDec2)

True if IfxDec1 <= IfxDec2

Max(IfxDec1, IfxDec2) Returns whichever is larger, IfxDec1 or
IfxDec2

Min(IfxDec1, IfxDec2) Whichever is smaller, IfxDec1 or IfxDec2

Modulo(a, b) Returns the remainder

Multiply(IfxDec1, IfxDec2) Returns IfxDec1 times IfxDec2

Negate(IfxDec) Current value negated

NotEquals(IfxDec1, IfxDec2) True if IfxDec1<>IfxDec2

Parse(DecString) Returns a new IfxDecimal based on
DecString

Remainder(a, b) Remainder of the integer division of a by b

Round(IfxDec1, FractionDigits) Value of IfxDec1 rounded to FractionDigits

Subtract(IfxDec1, IfxDec2) Returns IfxDec1 minus IfxDec2

ToString(), ToString (format) Returns the current value as a string

Truncate(IfxDec1,
FractionDigits)

Round() with truncation

Method Description
288 IBM Informix Developer’s Handbook

An application uses the GetIfxDecimal() method from the IfxDataReader()
class to access a DECIMAL column from the database.

Example 8-27 demonstrates how to retrieve a DECIMAL column

Example 8-27 The decimal.cs sample

using System;
using System.Data;
using IBM.Data.Informix;

class sample {
 static void Main(string[] args) {

 IfxConnection conn;
 IfxDecimal vtax;

 try {

 conn = new IfxConnection("Server=demo_on;Database=stores_demo");
 conn.Open();

// Select the datetime from the database
 IfxCommand cmmd = conn.CreateCommand();
 cmmd.CommandText = "SELECT * FROM state WHERE "
 + "code = 'CA'";
 IfxDataReader drdr;
 drdr = cmmd.ExecuteReader();
 drdr.Read();

// Get the IfxDecimal from the recordset
 vtax = drdr.GetIfxDecimal(2);
 Console.WriteLine("Value Sales Tax :\t "+vtax);
 Console.WriteLine("Ceiling Sales Tax :\t " + IfxDecimal.Ceiling(vtax));
 Console.WriteLine("Negative Sales Tax :\t " + IfxDecimal.Negate(vtax));

 conn.Close();
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 }
}

Example 8-28 shows the output of the previous example.

Example 8-28 Output of the decimal.cs sample

C:\work>csc.exe /R:%INFORMIXDIR%\bin\netf20\IBM.Data.Informix.dll /platform:x86
decimal.cs
 Chapter 8. Working with .NET data providers 289

C:\work>decimal
Value Sales Tax : 0.0825
Ceiling Sales Tax : 1.0
Negative Sales Tax : -0.0825

C:\work>

8.3.5 Troubleshooting

In this section, we discuss typical errors that occur when using the .NET
providers and how to enable the tracing facility to collect diagnostic information.

Typical errors
If the application fails to connect to the Informix database server, verify that
connection string details are correct for the server and version of the .NET
provider that you are using.

Both .NET providers use the ODBC or CLI layer to communicate with the
database server. You can test the connection with these components before
using a .NET provider.

When using Informix .NET Provider, always test the connectivity first using the
iLogin utility that is included with Client SDK.

Data Server Provider for .NET includes the Testconn11.exe and Testconn20.exe
executables that you can use to diagnose connectivity and setup problems when
using Data Server Provider for .NET.

Table 8-19 lists typical errors and how to resolved them.

Table 8-19 Typical errors

Error Reason Solution

ERROR [IM009] [Informix .NET
provider]
Unable to load translation
shared library (DLL)

The Informix .NET Provider
failed to load the ODBC
shared library.

Verify that the values for the
INFORMIXDIR environment variable
and PATH are correct.
INFORMIXDIR should point to the
Client SDK installation directory, and
PATH should contain the
%INFORMIXDIR%\bin directory.

System.BadImageFormatExcepti
on: An attempt was made to
load a program with an
incorrect format

A 32-bit application is
attempting to load a 64-bit
IBM.Data.Informix
assembly.

Register the proper version of the
.NET assembly into the GAC using
the gacutil.exe tool.
290 IBM Informix Developer’s Handbook

8.3.6 Tracing

Your application can set the following types of tracing when using Informix .NET
Provider:

� Informix .NET Trace
� SQLIDEBUG

Informix .NET Trace
This trace is specific to Informix .NET Provider. To use this feature, the
application must use the Trace version of the IBM.Data.Informix assembly
located in the %INFORMIXDIR%\netf20 directory. The name of shared library is
IBM.Data.Trace.dll.

Register the assembly in the GAC and enable the trace by setting the
IFXDOTNETTRACE and IFXDOTNETTRACEFILE environment variables.

Example 8-29 demonstrates how to register the trace library and generate a
.NET trace file.

Example 8-29 Trace setup

C:\work>gacutil /i %INFORMIXDIR%\bin\netf20\IBM.Data.IfxTrace.dll /nologo
Assembly successfully added to the cache

C:\work>set IFXDOTNETTRACE=2

C:\work>set IFXDOTNETTRACE=trace.txt

C:\work>decimal
Value Sales Tax : 0.0825

Unhandled Exception:
System.EntryPointNotFoundExc
eption: Unable to find an
entry point named
'InterlockedIncrement' in DLL
'kernel32.dll'.

A 64-bit application is
attempting to load a 32-bit
IBM.Data.Inforimx.dll
assembly.

Register the proper version of the
.NET assembly into the GAC using
the gacutil.exe tool.

Unhandled Exception:
System.DllNotFoundException:
Unable to load DLL
'IfxDotNetIntrinsicModule.dl
l': The specified module
could not be found.

Failed to load
IfxDotNetIntrinsicModule
assembly that is required by
the 64-bit version of Informix
.NET Provider.

When using the 64-bit version of
Informix .NET Provider, the PATH
environment variable needs to define
the %INFORMIXDIR%\bin and
%INFORMIXDIR%\bin\netf20
directories.

Error Reason Solution
 Chapter 8. Working with .NET data providers 291

Ceiling Sales Tax : 1.0
Negative Sales Tax : -0.0825

C:\work>dir trace.txt
 Volume in drive C is W2003
 Volume Serial Number is 50DA-70D7

 Directory of C:\work

25/06/2010 13:52 13,172 trace.txt
 1 File(s) 13,172 bytes
 0 Dir(s) 76,259,311,616 bytes free

C:\work>

The .NET trace file contains information about all the .NET classes that are used
and their return values. Example 8-30 shows some of the entries in the .NET
trace file.

Example 8-30 .NET Trace file

...
3532:1 Entry: IfxDecimal.ToString()
3532:1 Exit: IfxDecimal.ToString
IfxDecimal 0.0825
3532:1 Entry: IfxDecimal.ToString()
532:1 Exit: IfxDecimal.ToString
IfxDecimal -1.0
)
3532:1 Entry: IfxDecimal.get_IsNull()
3532:1 Exit: IfxDecimal.get_IsNull
532:1 Exit: IfxDecimal.Multiply
3532:1 Exit: IfxDecimal.Negate
3532:1 Entry: IfxConnection.Close()
3532:1 Entry: IfxConnection.GetLatch
(
 String IfxConnection.Close
)
...
292 IBM Informix Developer’s Handbook

The level of tracing is determine by the value of the IFXDOTNETTRACE variable:

0 No tracing

1 Tracing of API entry and exit, with return code

2 Tracing of API entry and exit, with return code, plus tracing of parameters
to the API

Levels 3 and 4 are for internal use only.

SQLIDEBUG and DRDADEBUG
Refer to “SQLIDEBUG” on page 119 for the description and use of the
SQLIDEBUG.

8.4 Visual Studio Add-In for Visual Studio

This section gives an overview of Visual Studio Add-in. The IBM Database
Add-Ins for Visual Studio are a collection of features that integrate into Microsoft
Visual Studio development environment so that you can work with IBM data
servers.

Visual Studio Add-in Version 9.5 is compatible with Visual Studio 2005, and it
uses Informix .NET Provider to connect to the database server.

Version 9.7 is compatible with Visual Studio 2005 and Visual Studio 2008 and
uses Data Server Provider for .NET.

Although it is not included in the Client SDK bundle, Visual Studio Add-in is
available as a separate product. For more information, refer to:

https://www.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-vsai
 Chapter 8. Working with .NET data providers 293

https://www.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-vsai

Visual Studio Add-In provides tools and wizards that simplify the .NET
development for the following common tasks:

� Explore catalog information of the database server.

� Generate Data Definition Language (DDL) for database objects.

� Drag server objects onto .NET application components to generate the
required ADO.NET code automatically.

To use Visual Studio Add-In, you first define the Informix server in the Data
Connections group of the Visual Studio environment. Select the Add Connection
to add a new server definition.

In the Add Connection panel, specify the server name, server log on ID and
password, and the database name.

When the database is connected, you can drag the Informix tables from the
Server Explorer pane to the .Net data set pane.

For more details about using IBM Database Add-Ins and Data Server Provider
for .NET for application development, refer to the IBM Information Management
and Visual Studio .NET zone at:

http://www.ibm.com/developerworks/data/zones/vstudio
294 IBM Informix Developer’s Handbook

http://www.ibm.com/developerworks/data/zones/vstudio

Chapter 9. Working with PHP

PHP is a powerful server-side scripting language that was invented and that is
designed for creating dynamic web applications with non-static content. The PHP
code can be a stand-alone program or an insert inside Hypertext Markup
Language (HTML) or Extensible Hypertext Markup Language (XHTML). The
PHP syntax is based mostly on and is similar to the C, Java, and Perl
programming language. You can use PHP based on an open-source license.

This chapter discusses the use of PHP with Informix as the database server. We
discuss various PHP database extensions that you can use to connect to
Informix. We also discuss other components, such as Apache Web Server and
OpenAdmin Tool (OAT), and how to bring these components together. We
describe in detail the use of programming interfaces that are provided by
selected PHP database extensions through the use of various examples.

This chapter includes the following topics:

� Informix and PHP extensions
� Setup and configuration
� Developing a PHP application

9

© Copyright IBM Corp. 2010. All rights reserved. 295

9.1 Informix and PHP extensions

The PHP Data Objects (PDO) extension defines a lightweight, consistent
interface for accessing databases in PHP. Each database driver that implements
the PDO interface can expose database-specific features as regular extension
functions.

Informix database can be accessed by PHP using the following PDO drivers:

� PDO_INFORMIX

This driver is also called PHP Driver for IBM Informix. To compile and use
the driver, you must install Informix Client Software Development Kit (Client
SDK). You can download this driver from:

http://pecl.php.net/package/PDO_INFORMIX

� PDO_IBM

This driver is also know as PHP Driver for Data Server clients. To use this
driver, you must install IBM Data Server Driver for ODBC and CLI on the
same computer. You can download this from:

http://pecl.php.net/package/PDO_IBM

In addition to these two drivers, the following PHP extensions allow you to access
an IBM Informix database:

� PHP_INFORMIX

This extension provides support only for standard Informix data types. This
extension is developed by the open source community and is available at:

http://cvs.php.net/viewvc.cgi/pecl/informix/

� IBM_DB2

This extension is available with IBM Data Server Driver and is written,
maintained, and supported by IBM. It supports the Informix and DB2
databases.

Your application development environment, including hardware and software,
determines which PHP drivers and extensions to use. If the platform of your
choice is not supported by IBM Data Server Driver or if you are using some of the
data types that are not supported by IBM Data Server Driver, then use the
Informix driver. The Data Server Driver for ODBC and CLI requires an Informix
database of Version v11.x or later. If your database server is exclusively Informix,
then you can use the Informix driver. You can also use both drivers
simultaneously if needed.
296 IBM Informix Developer’s Handbook

http://pecl.php.net/package/PDO_IBM
http://pecl.php.net/package/PDO_INFORMIX
http://cvs.php.net/viewvc.cgi/pecl/informix/

9.2 Setup and configuration

To develop a PHP application for Informix, your application development system
must have the following software:

� PHP drivers and extensions

Choose one of the PHP drivers or extensions that Informix supports. The
PHP Driver for IBM Informix requires Client SDK and the PHP Driver for Data
Server clients requires the IBM Data Server Driver for ODBC and CLI. Refer
to 2.2, “Client setup” on page 34 for the details.

� Web server

You can either install Apache Web Server or use OpenAdmin Tool (OAT),
which is a PHP-based web browser administration tool. Installing OAT is an
easier option, because it contains everything that is required for PHP
connectivity. At the time of writing this book, OAT version 2.2.7 has the
following components:

– Apache 2.2.4
– PHP 5.2.4
– PDO_INFORMIX 1.2.6

In this section, we discuss OAT installation and driver configuration. For
information about how to install the latest Apache Web Server, refer to the
following website:

http://httpd.apache.org/

9.2.1 Installing OAT

OpenAdmin Tool (OAT) is available for Windows, Linux, and Macintosh OS X
(64-bit only) at:

http://www.openadmintool.org

This website leads you to the IBM site, where you must register and log in.

After you complete the download, the installation procedure is as follows:

1. Start the installation with one of the following methods:

– GUI mode

Launch the installation executable using one of the following commands:

• On Windows systems: Run install.exe.
• On Linux: Run install.bin.
• On MAC OS X: Extract the install.zip file, and run install.app.
 Chapter 9. Working with PHP 297

http://www.openadmintool.org
http://httpd.apache.org/

– Console mode

Enter one of the following commands:

• On Windows systems: install.exe -i console
• On Linux: install.bin -i console

2. Accept the license agreement to continue.

3. Select the installation directory. The default directory is as follows:

– For Windows systems: C:\Program Files\OpenAdmin
– For Linux: /opt/OpenAdmin
– For MAC OS X: /Applications/OpenAdmin/

4. Choose an available port number for the web server.

5. For Windows operating system users, provide an Apache service name.

6. Specify the host name, which is the name of the computer where the
database server is located.

7. In the Security Features panel, enable password-protection for OAT
administration pages.

8. In the OAT Administrator login setup panel, enter a user name and password.

9. In the Plug-in page, ensure that the plug-ins that you want to install are
selected. Accept the license agreement.

10.In the Pre-Installation Summary panel, review your selections and proceed
with the installation. When the installation is complete, the following message
displays:

OpenAdmin Tool has been installed successfully. Please visit
http://servername:portnumber/openadmin/ to use the OpenAdmin Tool

Where:

– servername is the name of the system where the web server is running.
This name can be localhost on Windows.

– portnumber is the port number that you provided in step 4.

11.Click Done.

– For Windows systems: You need to reboot. You can access OAT from the
Start All Programs OpenAdmin Tool for IDS.

– For Linux and MAC OS X: The OAT configuration page opens in your
default web browser.

For an insight into OAT, read the release notes and the README file that are
bundled with the product.
298 IBM Informix Developer’s Handbook

9.2.2 Verifying the PDO_INFORMIX setup

We discuss the installation of the PDO_INFORMIX driver in 2.2.3, “Setting up
IBM Data Server drivers” on page 43. The PDO_INFORMIX driver is installed
automatically when you install OAT.

We use the PDO_INFORMIX driver and the Apache Web Server that is installed
with OAT in a Windows system for the examples in this chapter.

On successful installation of OAT, the php_pdo_informix.ddl shared library (.so
extension in Linux) is placed in the PHP extension directory. For example, if your
installation directory is C:\Program FIles\OpenAdmin, the shared library is in the
C:\Program Files\OpenAdmin\PHP_5.2.4\ext directory.

To verify that the PHP extensions are working, enter the following URL in a web
browser:

http://localhost:8080/phpinfo.php

9.2.3 Verifying the PDO setup

We discuss the installation of the PDO_IBM driver in 2.2.3, “Setting up IBM Data
Server drivers” on page 43. Depending on your platform copy, add the .dll or
.so to the OAT extension directory and change the php.ini to include the
extension php_pdo_ibm.dll or php_pdo_ibm.so.

You can see which PDO driver is loaded by the Apache Web Server by typing the
following address in your browser:

http://localhost:8080/phpinfo.php
 Chapter 9. Working with PHP 299

9.2.4 Verifying connectivity

You can use a simple PHP program to verify the connectivity to the Informix
server using the installed Informix PHP drivers or extensions.

Example 9-1 shows a simple PHP script that connects to the database server
using the PDO_INFORMIX driver. In the conn_string variable, set the proper
host name, user name, password, and respective locales. The first keyword in
the connection string identifies the PDO driver that is used. The
PDO_INFORMIX driver uses informix, and the PDO_IBM driver uses ibm.

Example 9-1 The connect.php program

<?php
 $informixdir = getenv("INFORMIXDIR");
 $uname = "informix"; $password= "123456";
 $conn_string = "informix: host=9.12.4.65; service=9088; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp; CLIENT_LOCALE=EN_US.CP1252 ;

 $sql = "SELECT dbinfo('version', 'major') version FROM systables WHERE
tabid=1";
 try {
 print "informixdir = $informixdir\n";
 $conn = new PDO($conn_string, $uname, $password);
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 print "Got a connection\n";
 $stmt = $conn->query($sql);
 if (! $stmt) {
 print "Error in execute: stmt->execute()\n";
 print "errInfo[0]=>$err[0]\nerrInfo[1]=>$err[1]\nerrInfo[2]=>$err [2]\n";
 }
 $row = $stmt->fetch();
 print "IDS version " . $row['VERSION'] . "\n";
 }
 catch (Exception $e) {
 print "Exception messsage:{$e->getMessage()}\n";
 exit(0);}
?>

If you run the script from a browser, an output similar to the following displays:

informixdir = C:\Program Files\IBM\Informix\
Got a connection
IDS version 11
300 IBM Informix Developer’s Handbook

You can use the same script to test the connectivity using the PDO_IBM driver by
just changing the connection string. Example 9-2 shows a typical connection
string using the PD_IBM driver.

Example 9-2 PDO_IBM connection string

$conn_string = "ibm: DRIVER={IBM DB2 ODBC
DRIVER};DATABASE=stores_demo;HOSTNAME=kodiak;PORT=9089;PROTOCOL=TCPIP;";

At this point, you know that your environment is set up properly, and you are
ready to begin using PHP with Informix.

9.3 Developing a PHP application

PHP is a powerful, server-side scripting language that was invented and
designed for creating dynamic web applications with non-static content. The PHP
code can be a stand-alone program or an insert inside Hypertext Markup
Language (HTML) or Extensible Hypertext Markup Language (XHTML). The
PHP syntax is based mostly on and similar to C, Java, and Perl. You can use
PHP with an open-source license. You can run the PHP program directly from the
command line.

We chose PHP for our applications for the following reasons:

� Easy to use

PHP is a scripting language that is included directly in HTML. Thus, getting
started is easy. There is no need to compile PHP programs or spend time
learning tools to create PHP. You can simply insert statements and get quick
turnaround as you make changes.

� Fully functional

The PHP language has built-in functions to access your favorite database.
With PHP, your HTML pages can reflect current information from databases.
You can use information for the user who is viewing your HTML web page to
customize the page specifically for that user. You can create classes for
object-oriented programming or use flat file or Lightweight Directory Access
Protocol (LDAP) databases. It also includes a spelling checker, XML
functions, image generation functions, and more.

� Compatible and quick

Because PHP generates plain HTML, PHP is compatible with all web
browsers.
 Chapter 9. Working with PHP 301

� Secure

Although PHP is open source, it is a secure environment. Web clients can
only see the pure HTML code. The logic of the PHP program is never
exposed to the client; therefore, security exposures are reduced.

� Open source

PHP is an open-source programming language. It is easy to get started and
find examples from websites. For example:

http://www.sourceforge.net

9.3.1 Connecting to a database

Regardless of which PHP driver you use, PDO_INFORMIX or PDO_IBM, you
must decide the type of connection to use for any database connection and the
user type to use for authentication.

Connection type
The following connection type behavior is controlled by the web server:

� Persistent connection

For the persistent connection, the web server leaves the connection to the
database open after the PHP script completes its work. The next attempt to
connect to the database with the same parameters reuses the connection.

� Standard connection

For the standard connection, the database connection is closed when the
script completes its execution.

Here are some considerations for persistent connection:

� When using the persistent connection, the same connection is used for the
next request with the same connection parameters. This connection might
cause connection pooling, depending on the implementation and how you
decide whether the connection is reused. Unintentional connection pooling is
most likely a source of serious problems, even if you use transactions.

� Opening up a persistent connection makes sense only in a web server
environment if the connection is not closed in the same script with a
connection close call. Calling the PHP command line processor on the shell
closes the connection to the Informix database server at the end of the
execution of the script.
302 IBM Informix Developer’s Handbook

http://www.sourceforge.net

� The web server spawns more than one process to handle the incoming web
requests. So, reusing the existing persistent connection is valid only for a
specific web server process. It results in the database server having more
connections open than actual running web server processes.

� Restarting the database server without cleaning up the remaining persistent
connections in the web server environment produces no errors at connection
time when the connection is reused but fails at the first database statement.
This type of error is hard to diagnose.

The user type
The user type is controlled by the database and has to do with authentication at
the database server. You can choose an authentication with user ID and
password in the connection string or a trusted user connect where the database
server does not apply an authentication. This connection is controlled by settings
on operating system resources, such as .rhosts or /etc/hosts.equiv files.
Because you have to specify user names and passwords in the PHP scripts, pay
attention to these files in regard to security. Use encapsulation for files that
contain passwords, and put these files in directories that are secured with the
.htaccess or httpd.conf mechanism of the Apache Web Server.

Informix PDO requires, at connection time, a defined set of parameters:

� Database name
� Database server name

We suggest that you use a user ID and password for untrusted user sessions.
Some optional parameters can influence the cursor behavior. In this section, we
focus on the required connection parameters.

Example 9-3 gives an overview about the various parameter settings in an
attempt to connect to the Informix database server. The examples shown are for
the PDO_INFORMIX driver. Choose one of the connection statements that
meets your requirements.

Example 9-3 The PDO_INFORMIX driver connection strings

/*--- standard connect ---*/
$dbc = new PDO("informix:; database=sysmaster;
server=ol_svr_custom;","informix", "123456");

/*--- standard connect trusted user ---*/
$dbc = new PDO("informix:; database=sysmaster; server=ol_svr_custom;");

/*--- persistent connect untrusted user ---*/
$dbc = new PDO("informix:; database=sysmaster;
server=ol_svr_custom;","informix","123456",array(PDO::ATTR_PERSISTENT=> true));
 Chapter 9. Working with PHP 303

/*--- persistent connect trusted user ---*/
$dbc = new PDO("informix:; database=sysmaster;
server=ol_svr_custom;",NULL,NULL,array(PDO::ATTR_PERSISTENT=> true));

The PDO_IBM driver is based on the Data Server Driver CLI driver. Thus, it uses
the same connectivity information as the ODBC and CLI driver. You can store this
information, as well as user credentials, in the db2cli.ini file that is located in
the user profile directory. Example 9-4 shows an example db2cli.ini file.

Example 9-4 An example db2cli.ini file

[dsc_dsn]
Protocol=TCPIP
Port=9089
Hostname=kodiak
Database=stores_demo
PWD=password
UID=password

Having the details inside the db2cli.ini file makes it easier to manage the
information that is needed for the connection. You can use either of the
connection strings mentioned in the Example 9-5. The second conn_string uses
the dbscli.ini file shown in Example 9-4 on page 304.

Example 9-5 PDO_IBM connection strings

$conn_string = "ibm: DRIVER={IBM DB2 ODBC DRIVER};DATABASE=stores_demo;
HOSTNAME=kodiak;PORT=9089;PROTOCOL=TCPIP;";

$conn_string = "ibm: DSN=dsc_dsn";

9.3.2 Performing database operations

Informix supports both static and dynamic SQL statements for the client
applications such as PHP programs. In this section, we provide an in-depth
discussion about the abilities of handling dynamic and static SQL of PDO
Informix. We focus on the INSERT statement but also give short examples for the
DELETE and UPDATE statements.
304 IBM Informix Developer’s Handbook

Static SQL statements
Example 9-6 shows various methods to execute a static INSERT with Informix
PDO.

Example 9-6 INSERT, UPDATE, and DELETE using the PDO_INFORMIX driver

<?php
$informixdir = getenv("INFORMIXDIR");
$dbc = new PDO("informix:; database=stores_demo;
server=ol_svr_custom;","informix", "123456");
$sql = "INSERT INTO customer VALUES(0,'Carla','Gomes','All kitchen supplies',
'2440 Cavaleras blvd', '', 'San Jose','CA','93086', '408-777-8075');";
$dbc->exec($sql);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" execute insert failed with %s
",$error["1"]);
exit(1);
}

/*--- Using PDO::query for the insert ---*/
$dbc->query($sql);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" execute insert failed with %s
",$error["1"]);
exit(1);
}

/*--- Using PDO::prepare and PDO::sql::execute for the insert ---*/
$stmt=$dbc->prepare($sql);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare insert failed with %s
",$error["1"]);
exit(1);
}
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" execute insert failed with %s
",$error["1"]);
exit(1);
}
printf("RowCount: %d
",$stmt->rowCount());
$stmt=$dbc->query("SELECT COUNT(*) FROM customer ");
$row=$stmt->fetch(PDO::FETCH_NUM);
printf("
Total Rows in Table %d
", $row[0]);
?>
 Chapter 9. Working with PHP 305

In a web application, the input data frequently comes from an HTML form that is
entered by a web user. Example 9-7 shows, based on a simple HTML form, how
the data flows from the HTML over the PHP script into the database table.

Example 9-7 HTML sample

basic html format
<?php
printf("<form method=\"post\" action=\"<your file name>.php\" >");
printf("fname <input name=\"fname\" />
");
printf("lname <input name=\"lname\" />
");
printf("company <input name=\"company\" />
");
printf("address1 <input name=\"address1\" />
");
printf("address2 <input name=\"address2\" />
");
printf("city <input name=\"city\" />
");
printf("state <input name=\"state\" />
");
printf("zipcode <input name=\"zipcode\" />
");
printf("phone <input name=\"phone\" />
");
printf("<input type=\"submit\" value=\"Confirm\" name=\"Button\"/>");
printf("<input type=\"submit\" value=\"Abort\" name=\"Cancel\"/>");
printf("</form>");
?>

Example 9-8 shows the PHP script that handles the HTML form. The $_POST
array contains all the settings for the buttons and the values for the text fields
from the HTML.

Example 9-8 PHP Script handling the insert

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) {
exit();
}
/* --data from the Input Format
0|Carla|Gomes|Red Socks|217 Milpitas|Alum Rock|San Jose|CA|408-988-9887|
---*/
$statement="INSERT INTO customer VALUES (0,".
"'" . $_POST["fname"] . "'," .
"'" . $_POST["lname"] . "'," .
"'" . $_POST["company"] . "'," .
"'" . $_POST["address1"] . "'," .
"'" . $_POST["address2"] . "'," .
"'" . $_POST["city"] . "'," .
"'" . $_POST["state"] . "'," .
"'" . $_POST["zipcode"] . "'," .
"'" . $_POST["phone"] . "');";
printf ("STATEMENT = %s", $statement);
306 IBM Informix Developer’s Handbook

$dbc->query($statement);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare insert failed with %s \n",$error["1"]);
exit(1);
}
?>

Example 9-9 shows how to perform an update and a delete using the PDO
Informix extension.

Example 9-9 Update a PHP script

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) {
exit();
}
/*--- Static update that changes Redwood city to Fremont ---*/
$statement="UPDATE customer SET city='Fremont' where city='Redwood City'";
$stmt=$dbc->query($statement);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" update failed with %s
",$error["1"]);
}
printf("#Records updated: %d
",$stmt->rowCount());

/*--- Delete all records beloning to the company Sportstown; ---*/
$dbc->beginTransaction();
$statement="DELETE FROM customer WHERE company='Sportstown'";
$stmt=$dbc->prepare($statement);
$stmt->execute();
printf("#Records deleted: %d
",$stmt->rowCount());
if ($stmt->rowCount()>10000)
{
$dbc->rollback();
}
else {
$dbc->commit();
}
?>
 Chapter 9. Working with PHP 307

Dynamic SQL statements
Dynamic SQL statements allow an Informix client side program to build an SQL
statement at run time, so that the content of the statement can be determined by
user input. Informix PDO provides several methods to use dynamic SQL. You
must use placeholders, such as “?” or “:parameter” to prepare a statement for
dynamic usage. These placeholders are later substituted with the values.

The “prepare once, execute multiple times” capability of dynamic statements
allows you to specify different values at each execution time. To determine which
statements and clauses allow placeholders, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqls.doc/sqls
.htm

This document also provides a comprehensive reference of Informix SQL
statements.

Example 9-10 shows different INSERT statements using Informix PDO. To learn
more about using placeholders (“?”) and bind parameters, refer to PHP manual
at:

http://php.net/manual/en/pdostatement.bindparam.php

Example 9-10 INSERT statements using Informix PDO

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo; server=ol_svr_custom;
protocol=onsoctcp ", "informix", "123456");
if (!dbc) {
exit();
}

/*--- dynamic inserts with "?" and bindParam ---*/
$stmt=
$dbc->prepare("INSERT INTO customer VALUES (0,?,?,?,?,?,?,?,?,?)");
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare insert1 failed with %s \n",$error["1"]);
exit(1);
}
$stmt->bindParam(1, $_POST["fname"]);
$stmt->bindParam(2, $_POST["lname"]);
$stmt->bindParam(3, $_POST["company"]);
$stmt->bindParam(4, $_POST["address1"]);
$stmt->bindParam(5, $_POST["address2"]);
$stmt->bindParam(6, $_POST["city"]);
$stmt->bindParam(7, $_POST["state"]);
$stmt->bindParam(8, $_POST["zipcode"]);
$stmt->bindParam(9, $_POST["phone"]);
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
308 IBM Informix Developer’s Handbook

http://php.net/manual/en/pdostatement.bindparam.php
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqls.doc/sqls.htm

printf(" prepare insert2 failed with %s \n",$error["1"]);
exit(1);
}

/*--- dynamic inserts with :<> placeholders and bindParam ---*/
$stmt=
$dbc->prepare("INSERT INTO customer VALUES (0,:p1,:p2,:p3,:p4,:p5,:p6,:p7,:p8,:p9)");
$stmt->bindParam(':p1', $_POST["fname"]);
$stmt->bindParam(':p2', $_POST["lname"]);
$stmt->bindParam(':p3', $_POST["company"]);
$stmt->bindParam(':p4', $_POST["address1"]);
$stmt->bindParam(':p5', $_POST["address2"]);
$stmt->bindParam(':p6', $_POST["city"]);
$stmt->bindParam(':p7', $_POST["state"]);
$stmt->bindParam(':p8', $_POST["zipcode"]);
$stmt->bindParam(':p9', $_POST["phone"]);
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare insert2 failed with %s \n",$error["1"]);
exit(1);
}

/*--- dynamic inserts with "?" placeholders and bindValue ---*/
$stmt=
$dbc->prepare("INSERT INTO customer VALUES (99,?,?,?,?,?,?,?,?,?)");
$stmt->bindValue(1, $_POST["fname"],PDO::PARAM_STR);
$stmt->bindValue(2, $_POST["lname"],PDO::PARAM_STR);
$stmt->bindValue(3, $_POST["company"],PDO::PARAM_STR);
$stmt->bindValue(4, $_POST["address1"],PDO::PARAM_STR);
$stmt->bindValue(5, $_POST["address2"],PDO::PARAM_STR);
$stmt->bindValue(6, $_POST["city"],PDO::PARAM_STR);
$stmt->bindValue(7, $_POST["state"],PDO::PARAM_STR);
$stmt->bindValue(8, $_POST["zipcode"],PDO::PARAM_STR);
$stmt->bindValue(9, $_POST["phone"],PDO::PARAM_STR);
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare insert3 failed with %s \n",$error["1"]);
exit(1);
}

/*--- dynamic inserts with :<> placeholders and bindValue ---*/
$stmt=
$dbc->prepare("INSERT INTO customer VALUES
(199,:p1,:p2,:p3,:p4,:p5,:p6,:p7,:p8,:p9)");
$stmt->bindValue(':p1', $_POST["fname"],PDO::PARAM_STR);
$stmt->bindValue(':p2', $_POST["lname"],PDO::PARAM_STR);
$stmt->bindValue(':p3', $_POST["company"],PDO::PARAM_STR);
$stmt->bindValue(':p4', $_POST["address1"],PDO::PARAM_STR);
$stmt->bindValue(':p5', $_POST["address2"],PDO::PARAM_STR);
$stmt->bindValue(':p6', $_POST["city"],PDO::PARAM_STR);
$stmt->bindValue(':p7', $_POST["state"],PDO::PARAM_STR);
$stmt->bindValue(':p8', $_POST["zipcode"],PDO::PARAM_STR);
 Chapter 9. Working with PHP 309

$stmt->bindValue(':p9', $_POST["phone"],PDO::PARAM_STR);
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" prepare4 insert failed with %s \n",$error["1"]);
exit(1);
}
?>l

9.3.3 Handling complex data types

In this section, we discuss how to use complex data types in a PHP program. We
cover row types, collection types (such as SET, LIST, and MULTISET), and the
BLOB and SBLOB data types. We explain how to work with the complex data
types using examples with Informix PDO.

Named row types
Example 9-11 shows the Data Definition Language (DDL) to create a ROW type
and the table that uses the ROW type.

Example 9-11 DDL for creating ROW type and table

/*Create a row type and a table by name customer_rtype as below

CREATE ROW TYPE address_rtype (
street_num int,
street_name char(20),
city char(20),
state char(20),
zipcode char(10)
);

CREATE TABLE customer_rtype (
customer_num serial,
lname char(15),
fname char(15),
company char(20),
address address_rtype,
phone char(18)
);
310 IBM Informix Developer’s Handbook

The PHP script in Example 9-12 shows SQL statements using ROW type. This
script inserts two rows and selects the data from the database with and without a
filter on the row type. It then updates one of the rows and delete the rows from
the table.

Example 9-12 Insert complex types sample

<?php

$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo; server=ol_svr_custom;
protocol=onsoctcp ", "informix", "123456");
if (!dbc) {
exit();
}
printf("
[INSERT]

");

/*--- Insert a row with a rowtype -- add a row to the newly created table ---*/
$dbc->query(' INSERT INTO customer_rtype VALUES (
0,"Carla","Gomes","All Sports",row(12345,"Broadway","San
Fransisco","CA","12345")::address_rtype, "408-908-8887")');
$dbc->query(' INSERT INTO customer_rtype VALUES (
0,"Smith","jones","Collin sports",row(1222,"Almeda
blvd","Fremont","CA","12345")::address_rtype,"345-908-8887")');
printf("
[SELECT without filter]

");

/*--- Select the customer row without any filters ---*/
$stmt1=$dbc->query(" SELECT customer_num,fname,address.city,address.state,phone from
customer_rtype");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
while($row) {
print_r($row);
printf("
");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
}
printf("
[SELECT with row_type filter]

");

/*--- Select the row with a row_type filter (a given address) ---*/
$stmt1=$dbc->query(' SELECT customer_num , address.state, phone FROM customer_rtype
WHERE row(1222,"Almeda blvd","Fremont","CA","12345")::address_rtype = address');
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
while($row) {
print_r($row);
printf("
");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
}
printf("
[UPDATE]

");

/*--- update customer address ---*/
$stmt1=$dbc->query(' UPDATE customer_rtype SET
address=row(1234,"Almeda blvd","Fremont","CA","12345")::address_rtype WHERE
row(1222,"Almeda blvd","Fremont","CA","12345")::address_rtype = address');
printf("
[SELECT]

");
 Chapter 9. Working with PHP 311

/*--- Verification ---*/
$stmt1=$dbc->query(' SELECT customer_num,fname, address::lvarchar FROM customer_rtype
WHERE address = row(1234,"Almeda blvd","Fremont","CA","12345")::address_rtype');
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
while($row) {
print_r($row);
printf("
");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
}
printf("
[DELETE]

");

/*--- close the buisness ---*/
$dbc->query(' DELETE FROM address_rowtype ');
$dbc->query(' DELETE FROM customer_rtype ');
?>

Example 9-13 shows the output from the SELECT statements to give you an idea
of how the array with row types looks in PHP.

Example 9-13 Output of ROW type example

[INSERT]

[SELECT without row_type filter]

Array ([CUSTOMER_NUM] => 1 [FNAME] => Gomes [CITY] => San Fransisco [STATE] => CA
[PHONE] => 408-908-8887)
Array ([CUSTOMER_NUM] => 2 [FNAME] => jones [CITY] => Fremont [STATE] => CA [PHONE] =>
345-908-8887)

[SELECT with filter]

Array ([CUSTOMER_NUM] => 2 [STATE] => CA [PHONE] => 345-908-8887)

[UPDATE]

[SELECT]

Array ([CUSTOMER_NUM] => 2 [FNAME] => jones [] => ROW(1234 ,'Almeda blvd ','Fremont
','CA ','12345 '))

[DELETE]
312 IBM Informix Developer’s Handbook

Collection data types
The collection data types are another set of complex data types provided by the
Informix. Collection data types include SET, LIST, and MULTISET. In this section,
we cover these collection data types. Example 9-14 shows an example that
inserts into and selects from a table containing collection data types.

Example 9-14 Using collection data types in PHP

<?php
/*create the tables containing collection data types
CREATE TABLE t_collections
(
 seq serial not null,
 l1 list (integer not null),
 s1 set (integer not null),
 m1 multiset(integer not null)
);
*/

$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456",
array(PDO::ATTR_PERSISTENT=> true));
if (!dbc) {
exit();
}
/*--- Insert a row ---*/
printf("
[Insert]

");
$dbc->query(" INSERT INTO t_collections VALUES (0,
'LIST{-1,0,-2,3,0,0,32767,249}', 'SET{-1,0,-2,3}', 'MULTISET{-1,0,0,-2,3,0}')
");
$dbc->query(" INSERT INTO t_collections VALUES (0,
'LIST{-1,0,-2,3,0,0,55555,249}', 'SET{-11,0,-2,3}',
'MULTISET{-1,0,0,-2,3,0,9,10}') ");

/*--- select the row without any filters ---*/
printf("
[SELECT without filter]

");
$stmt1=$dbc->query(" SELECT l1::lvarchar LIST, s1::lvarchar SET, m1::lvarchar
MULTISET FROM t_collections");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
while($row) {
print_r($row);
printf("
");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
}

/*--- select the row with a set filter for the color of the car ---*/
printf("
 [SELECT with filter]

");
$stmt1=$dbc->query(" SELECT l1::lvarchar LIST, s1::lvarchar SET, m1::lvarchar
MULTISET FROM t_collections WHERE 32767 IN l1");
 Chapter 9. Working with PHP 313

$row=$stmt1->fetch(PDO::FETCH_ASSOC);
while($row) {
print_r($row);
printf("
");
$row=$stmt1->fetch(PDO::FETCH_ASSOC);
}
?>

Example 9-15 shows the output of Example 9-14 on page 313.

Example 9-15 The output of collection data type

[Insert]

[SELECT without filter]

Array ([LIST] => LIST{-1 ,0 ,-2 ,3 ,0 ,0 ,32767 ,249 } [SET] => SET{-1 ,0 ,-2
,3 } [MULTISET] => MULTISET{-1 ,0 ,0 ,-2 ,3 ,0 })
Array ([LIST] => LIST{-1 ,0 ,-2 ,3 ,0 ,0 ,55555 ,249 } [SET] => SET{-11 ,0 ,-2
,3 } [MULTISET] => MULTISET{-1 ,0 ,0 ,-2 ,3 ,0 ,9 ,10 })

[SELECT with filter]

Array ([LIST] => LIST{-1 ,0 ,-2 ,3 ,0 ,0 ,32767 ,249 } [SET] => SET{-1 ,0 ,-2
,3 } [MULTISET] => MULTISET{-1 ,0 ,0 ,-2 ,3 ,0 })

BLOB and SBLOB data types
With BLOB and SBLOB data types, Informix IDS can handle large objects as
binary data in a BYTE data type and text objects in a TEXT data type. The BYTE
and TEXT data types, commonly known as BLOB data types or simple large
objects, provides the capability to store images and entire documents in the
database. BLOB data types can be stored within all the other data in the table
space or in a separate specified BLOB space.

BLOB data types can be used in several operational areas. Commonly,
document retrieval systems and geographic information systems are based on
this data type. To retrieve BLOB data with SQL, you need to define keywords,
which are stored together with the BLOB in the data row. The benefit of storing
large data in the database is, in addition to an easy search using keywords and a
combination of data stored in different rows but belonging together, the
opportunity to backup and restore or delete and update for specific data. Storing
the data in a file in the operating system is much more of a maintenance effort.
314 IBM Informix Developer’s Handbook

More advanced than the BLOB data types, smart large objects (commonly
known as SBLOB), provide more flexibility for searching data, such as random
I/O access to the data, which was impossible with simple large objects).

There are two types of SBLOBs, BLOB, and CLOB. The BLOB data type is used
to stored binary data when the CLOB data type is used only for character data.
There types require an additional set of functions defined in the server that
provides an API for access. They are stored in an SBLOB space (smart BLOB
space) in the database server.

You must create an sbspace to store the BLOB types in the server. You can
create them with following command:

onspaces -c -S sbspace -p <PATH> -o 0 -s 4000

We change the catalog table in the stores database to use BLOB and CLOB
instead of BYTE and TEXT using the following command:.

ALTER TABLE catalog MODIFY (cat_descr TEXT, cat_descr CLOB, cat_picture BYTE,
cat_picture BLOB)

Example 9-16 shows how to insert and retrieve from data with SBLOB data
types, that is BLOB and CLOB. The example shows how to insert the large data
from files into a table and how to select the same data back into files in a local file
system.

Example 9-16 Smart large object sample

<<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) { exit(); }

/*--- try to insert the BLOB ---*/
$stmt= $dbc->prepare("INSERT INTO catalog VALUES (0,302,'KAR',?,?,'All sports
Goods')");
$file = fopen ("picture.jpg","r");
$image = fread ($file, 100000) ;
fclose ($file);
$file = fopen ("README.txt","r");
$text = fread ($file, 100000) ;
fclose ($file);
$stmt->bindParam(1, $text);
$stmt->bindParam(2, $image);
$stmt->execute();
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" execute insert blobs failed with %s \n",$error["1"]);
exit(1);
 Chapter 9. Working with PHP 315

}

/*--- Get the BLOB from the database back ---*/
$query=$dbc->query("SELECT * FROM catalog where stock_num=302 and
manu_code='KAR' ");
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" select blobs failed with %s \n",$error["1"]);
exit(1);
}
$count=1;
$row=$query->fetch(PDO::FETCH_ASSOC);
while ($row) {
$file = fopen ("README.$count.txt","w");
$test=fread($row["CAT_DESCR"],100000);
while($test) {
fwrite ($file, $test) ;
$test=fread($row["CAT_DESCR"],100000);
}
fclose ($file);
$file = fopen ("PICTURE.$count.jpg","w");
$test1=fread($row["CAT_PICTURE"],100000);
while($test1) {
fwrite ($file, $test1) ;
$test1=fread($row["CAT_PICTURE"],100000);
}
fclose ($file);
$count++;
$row=$query->fetch(PDO::FETCH_ASSOC);
}
?>

Using TEXT and BYTE (BLOB data types) is similar to SBLOB types. Users can
try Example 9-16 on page 315 and Example 9-17 using TEXT and BYTE instead
of CLOB and BLOB respectively.

The BLOB data to be inserted can be read from the file without placing it in a
variable first, which simplifies the code as shown in Example 9-17.

Example 9-17 Insert BLOB with file

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) { exit(); }

/*--- try to insert the BLOB ---*/
316 IBM Informix Developer’s Handbook

$stmt= $dbc->prepare("INSERT INTO catalog VALUES (0,302,'KAR',?,?,'All sports
Goods')");
$file = fopen ("C:\README.txt","r");
$file1 = fopen ("C:\picture.jpg","r");
$stmt->bindParam(1,$file, PDO::PARAM_LOB);
$stmt->bindParam(2,$file1, PDO::PARAM_LOB);
$stmt->execute();
fclose($file);
fclose($file1);
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" execute insert blobs failed with %s \n",$error["1"]);
exit(1);
}

/*---try to get the BLOB from the database back ---*/
$query=$dbc->query("SELECT * FROM catalog where stock_num=302 and
manu_code='KAR' ");
$error=$dbc->errorInfo();
if ($error["1"]) {
printf(" select blobs failed with %s \n",$error["1"]);
exit(1);
}
$count=1;
$row=$query->fetch(PDO::FETCH_ASSOC);
while ($row) {
$file = fopen ("C:\README.$count.txt","w");
$test=fread($row["CAT_DESCR"],100000);
while($test) {
fwrite ($file, $test) ;
$test=fread($row["CAT_DESCR"],100000);
}
fclose ($file);
$file = fopen ("C:\PICTURE.$count.jpg","w");
$test1=fread($row["CAT_PICTURE"],100000);
while($test1) {
fwrite ($file, $test1) ;
$test1=fread($row["CAT_PICTURE"],100000);
}
fclose ($file);
$count++;
$row=$query->fetch(PDO::FETCH_ASSOC);
}
?>
 Chapter 9. Working with PHP 317

In Example 9-17 on page 316, the data was selected as a stream in string data
type. Example 9-18 shows how to bind variables to a SELECT. The data is
placed in the variables by column.

Example 9-18 Select BLOB with bind

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) { exit(); }

/*--- try to select the BLOB from the database into bind strings ---*/
$stmt=$dbc->query("SELECT catalog_num, cat_descr, cat_picture FROM catalog
where stock_num=302 and manu_code='KAR'");
$count=1;
$str="";
$str1="";
$id=0;
$stmt->bindColumn(1, $id, PDO::PARAM_INT);
$stmt->bindColumn(2, $str, PDO::PARAM_STR,100000);
$stmt->bindColumn(3, $str1, PDO::PARAM_STR,100000);
while ($stmt->fetch(PDO::FETCH_BOUND))
{
$file = fopen ("C:\README.$count.txt","w");
$file1 = fopen ("C:\PICTURE.$count.jpg","w");
fwrite($file,$str);
fwrite($file1,$str1);
fclose ($file);
fclose ($file1);
$count++;
}
?>

Example 9-19 shows how to update existing BLOB fields with Informix PDO
using a prepare statement and parameter for the BLOB columns.

Example 9-19 BLOB update

<?php
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo;
server=ol_svr_custom; protocol=onsoctcp ", "informix", "123456");
if (!dbc) { exit(); }
/*
try to update the BLOB columns
*/
$stmt= $dbc->prepare("UPDATE catalog SET cat_descr=? , cat_picture=? where
stock_num=302 and manu_code='KAR'");
$error=$dbc->errorInfo();
if ($error["1"]) {
318 IBM Informix Developer’s Handbook

printf(" prepare update blob columns failed with %s \n",$error["1"]);
exit(1);
}
$descr="This is an PDO descr clob text";
$file= fopen ("C:\picture1.jpg","r");
$stmt->bindParam(1, $descr);
$stmt->bindParam(2, $file);
$stmt->execute();
$error=$dbc->errorInfo();
?>

9.3.4 Working with PHP extensions

In addition to the PDO drivers for the PHP PDO extension, there are two PHP
extensions that allow you to connect to an Informix database server:

� PHP_INFORMIX
� IBM_DB2

These extensions provide a set of additional PHP functions to work with an
Informix database. In addition to the normal create, read, update, and write
database operations, they also offer extensive access to the database metadata.

Table 9-1 lists a few of the functions that are included in the Informix PHP
extensions as examples.

Table 9-1 PHP extension functions

Function Description

ifx_connect() Opens Informix Server connection

ifx_fieldproperties() Lists of SQL field properties

ifxus_open_slob() Opens an SLOB object

ifx_create_blob() Creates an BLOB object

ifx_fetch_row() Gets row as an associative array

ifx_query() Sends Informix query

db2_connect() Returns a connection to a database

db2_client_info() Returns information describing DB2 database client

db2_primary_keys() Returns a result set listing primary keys for a table

db2_special_columns() Returns a result set listing the unique row identifier
columns for a table
 Chapter 9. Working with PHP 319

For a complete list of all the functions that are implemented in the
PHP_INFORMIX and IBM_DB2 extensions, refer to:

http://www.php.net/manual/en/ref.ifx.php
http://www.php.net/manual/en/ref.ibm-db2.php

The PHP_INFORMIX extension
A PHP script can connect to an Informix database using the ifx_connect()
function that is provided in the PHP_INFORMIX extension.

Example 9-20 shows a simple PHP script that tests connectivity with the
PHP_INFORMIX extension.

Example 9-20 The connect.php script

C:\work>type connect.php
<?php
$conn= ifx_connect ($argv[1], $argv[2],$argv[3]);
echo "Connection succeeded.\n";
ifx_close($conn);
?>
C:\work>php connect.php stores_demo informix password
Connection succeeded.

C:\work>

You can use functions such as ifx_query() and ifx_affected_rows() to run
SQL statements and to retrieve the number of rows affected. Example 9-21
demonstrates how to delete a row from the state table using the ifx_query()
function.

Example 9-21 The delete.php script

C:\work>type delete.php
<?php
$conn= ifx_connect ("stores_demo", "informix", "password");
$result = ifx_query("DELETE FROM state where code='".$argv[1]."'", $conn);
printf("Deleted %d records", ifx_affected_rows($result));
ifx_close($conn);
?>

C:\work>php delete.php UK

db2_bind_param() Binds a PHP variable to an SQL statement parameter

db2_commit() Commits a transaction

Function Description
320 IBM Informix Developer’s Handbook

http://www.php.net/manual/en/ref.ifx.php
http://www.php.net/manual/en/ref.ibm-db2.php

Deleted 1 records

C:\work>

The application can select data from an Informix database using the
ifx_prepare() and ifx_fetch_row() functions.

Example 9-22 shows how to select the first three rows from the state table using
a prepared statement and the ifx_fetch_row() function.

Example 9-22 The select.php script

C:\work>cat select.php
<?php
$conn= ifx_connect ("stores_demo", "informix", "password");

$rid = ifx_prepare ("SELECT FIRST 3 code,sname FROM state",$conn, IFX_SCROLL);
if (! ifx_do ($rid)) {
 die ("error\n");
}
$row = ifx_fetch_row ($rid, "NEXT");
while (is_array($row)) {
 for (reset($row); $fieldname=key($row); next($row)) {
 $fieldvalue = $row[$fieldname];
 printf ("%s = %s ", $fieldname, $fieldvalue);
 }
 printf("\n");
 $row = ifx_fetch_row($rid, "NEXT");
}
ifx_free_result ($rid);
ifx_close($conn);
?>
C:\work>php select.php
code = AK sname = Alaska
code = HI sname = Hawaii
code = CA sname = California

C:\work>

For more information and examples regarding the PHP_INFORMIX extension,
refer to:

http://www.php.net/manual/en/book.ifx.php
 Chapter 9. Working with PHP 321

http://www.php.net/manual/en/book.ifx.php

The IBM_DB2 extension
This PHP extension provides access to IBM Data Servers, including IBM Informix
and IBM DB2.

In the same way as the PDO driver, PDO_IBM, the IBM_DB2 extension requires
the IBM CLI driver to communicate with the database server. The IBM CLI driver
is included as part of the IBM Data Server Driver for ODBC and CLI package.

This PHP extension provides functions such as db2_connect(), db2_exec(), and
db2_server_info() that you can use to perform typical tasks against an Informix
database server.

Example 9-23 demonstrates how to use the db2_connect() and
db2_server_info() functions to retrieve metadata information from the database.

Example 9-23 The connect_ibm.php script

C:\work>type "C:\Documents and Settings\Administrator\db2cli.ini"

[dsc_dsn]
Protocol=TCPIP
Port=9089
Hostname=kodiak
Database=stores_demo

C:\work>cat connect_ibm.php
<?php
$conn = db2_connect('dsc_dsn', 'informix','password');

if ($conn) {
 echo "Connection succeeded.\n";
 $server = db2_server_info($conn);
 printf ("Database name = %s\n", $server->DBMS_NAME);
 printf ("Datbase version = %s\n", $server->DBMS_VER);
 db2_close($conn);
}
else {
 echo "Connection failed.";
}
?>
C:\work>php connect_ibm.php
Connection succeeded.
Database name = IDS/NT64
Datbase version = 11.50.0000

C:\work>
322 IBM Informix Developer’s Handbook

The IBM_DB2 extension can use the connection details in the db2cli.ini
configuration file. Refer to the 3.2.2, “IBM Data Server Driver for ODBC and CLI”
on page 70 for more information regarding the db2cli.ini configuration file.

You can use several functions to select data from the database. Example 9-24
shows how to use the db2_fecth_object() function to retrieve the first three rows
of the state table as a PHP object.

Example 9-24 The select_ibm.php script

C:\work>cat select_ibm.php
<?php
$conn = db2_connect('dsc_dsn', 'informix','password');

if ($conn) {
 echo "Connection succeeded.\n";

 $stmt = db2_exec($conn, "SELECT FIRST 3 code,sname FROM state");
 while ($row = db2_fetch_object($stmt)) {
 printf ("%s, %s\n", $row->code,$row->sname);
 }
 db2_close($conn);
}
else {
 echo "Connection failed.";
}
?>
C:\work>php select_ibm.php
Connection succeeded.
AK, Alaska
HI, Hawaii
CA, California

C:\work>

You can find a full description of the IBM_DB2 extension at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.p
hp.doc/doc/t0023132.htm
 Chapter 9. Working with PHP 323

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.php.doc/doc/t0023132.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.php.doc/doc/t0023132.htm

9.3.5 Exception handling

Error handling or exception handling is important for all applications, including
web-based applications. Consider an Informix PHP application that shows the
following error message while the user is using the application:

Warning: odbc_connect(): SQL error: [unixODBC][Informix][Informix
ODBCDriver][Informix]User (informix) password “123456” is not able to
connect for the database server, Server is down, SQL state 28000 in
SQLConnect in /usr/local/apache2/htdocs/odbc/error/error.php on line 4

In this case, fail in exception handling creates a security exposure. In the this
section, we describe many aspects related to exception handling using Informix
PDO.

PHP 5 has introduced, as a part of the new object-oriented programming
interface, the exception handling mechanism that is already used for other
programming languages. We strongly suggest that you consider exceptions for
the usage of Informix PDO. Additionally, you can advance this interface by
creating, throwing, and catching your own exceptions.

In comparison with the procedural-oriented interface, Informix PDO defines the
following methods of expressing an error in a database environment:

� Exceptions raised internally by the PDO based on an error condition

� Database-generated errors, which can be captured and handled by calling the
PDO class errorInfo() or errorCode() function

Example 9-25 shows two exceptions raised by Informix PDO functions. One
exception is a connection request to the database that failed because the
specified database does not exist. The other exception is an attempt to start a
transaction twice.

Example 9-25 Without exception handling sample

<?php
$dbc = new PDO("informix:; database=stores; server=ol_svr_custom;","informix",
"123456");
?>

Fatal error: Uncaught exception 'PDOException' with message 'SQLSTATE=HY000,
SQLDriverConnect: -329 [Informix][Informix ODBC Driver][Informix]Database not
found or no system permission.' in C:\Program
Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php:2 Stack trace: #0 C:\Program
Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php(2): PDO->__construct('informix:;
data...', 'informix', '123456') #1 {main} thrown in C:\Program
Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php on line 2
324 IBM Informix Developer’s Handbook

<?php
$dbc = new PDO("informix:; database=stores_demo;
server=ol_svr_custom;","informix", "123456");
$dbc->beginTransaction();
$dbc->beginTransaction();
?>
Fatal error: Uncaught exception 'PDOException' with message 'There is already
an active transaction' in C:\Program
Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php:4 Stack trace: #0 C:\Program
Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php(4): PDO->beginTransaction() #1
{main} thrown in C:\Program Files\OpenAdmin\Apache_2.2.4\htdocs\excep1.php on
line 4

If these exceptions are not caught and processed, the application terminates.
Example 9-26 shows the use of the basic exception handler provided by PHP 5
to cover these errors. After an exception is caught, the action that is taken
depends on where the error originates. For example, if the error occurs in
connecting to the database phase and the application cannot continue, the action
is to generate an “out of order” web page with contact details. If the error is a
minor database error, logging the error and retrying the activity is an appropriate
action.

Example 9-26 Simple exception handle code

<?php
try
{
$dbc = new PDO("informix:; database=stores_demo;
server=ol_svr_custom;","informix", "123456");
$dbc->beginTransaction();
$dbc->beginTransaction();
}
catch (PDOException $e)
{
printf("Error: %s \n",$e->getMessage());
}
?>

Output:
Error: There is already an active transaction.
 Chapter 9. Working with PHP 325

The error information that is generated when executing the SQL statements in
the database server is different from the exceptions that are generated by the
Informix PDO extension. You can use the Informix PDO errorInfo() function to
capture the status of the last executed SQL statement in the database. This
function returns an array with the following elements:

� The SQLSTATE
� The SQLCODE
� The error message

For the details about the meaning of the codes, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/s
ii-11-40709.htm#sii-11-40709

The errorCode() function is available to retrieve the SQL statement status. This
function returns only the SQLSTATE information. Example 9-27 shows how to
use the errorInfo() function and its output.

Example 9-27 ErrorInfo() sample

<?php
$dbc = new PDO("informix:; database=stores_demo;
server=ol_svr_custom;","informix", "123456");
$stmt=$dbc->query('SELECT * FROM nonexistingtable ');
/*
question the error code
output of the error Routines
*/

$error=$dbc->errorInfo();
print_r($error);
if (!$error[1])
$row=$stmt->fetch(PDO::FETCH_ASSOC);
?>

Output:
Array
(
[0] => 42S02
[1] => -206
[2] => [Informix][Informix ODBC Driver][Informix]The specified table
(nonexistingtable) is not in the database. (SQLPrepare[-206] at at
ext\pdo_informix\informix_driver.c:118)
)

In addition to using the generic exceptions provided by the PHP 5, you can
extend the exception class of your own exceptions. For example, you can define
different severities for SQL errors. Critical database errors are, for example tables
326 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.esqlc.doc/sii-11-40709.htm#sii-11-40709

that do not exist or the database connections, cannot be established. The
application cannot continue with these critical errors. Non-critical errors, such as
locking errors, can be handled by a retry.

Example 9-28 demonstrates how to define your own exceptions with PHP 5 and
Informix PDO. This example extends the standard exception class with two new
database exception classes and, depending on the severity, different actions are
taken.

Example 9-28 Custom exceptions

<?php
/*
own Exception classes for minor and major errors
*/
class CriticalDatabaseErrors extends Exception
{
public function __construct($message, $code = 0) {
parent::__construct($message, $code);
}
}
class NonCriticalDatabaseErrors extends Exception
{
public function __construct($message, $code = 0) {
parent::__construct($message, $code);
}
}
try
{
$dbc = new PDO("informix:host=9.14.23.34; database=stores_demo; server=ol_svr_custom;
protocol=onsoctcp ", "informix", "123456");
$stmt=$dbc->exec("SET ISOLATION REPEATABLE READ");
$stmt=$dbc->query('SELECT * FROM carr');
$error=$dbc->errorInfo();
if (!$error[1]) {
do
{
$row=$stmt->fetch(PDO::FETCH_ASSOC);
$error=$dbc->errorInfo();
if ($error[1]) throw new NonCriticalDatabaseErrors($error[1]);
}
while($row) ;
}
else {
throw new CriticalDatabaseErrors($error[2]);
}
}
catch (CriticalDatabaseErrors $cde)
{
printf("<pre>CritError!: %s \n</pre>",$cde->getMessage()) ;
}
catch (NonCriticalDatabaseErrors $ncde)
{

 Chapter 9. Working with PHP 327

printf("<pre>NonCritError!: %s \n</pre>",$ncde->getMessage()) ;
} catch (PDOExecption $ncde) {
printf("<pre>Error!: %s \n</pre>",$e->getMessage()) ;
exit;
}
?>
Output:
CritError!: [Informix][Informix ODBC Driver][Informix]The specified table (carr) is not
in the database. (SQLPrepare[-206] at ext\pdo_informix\informix_driver.c:131)

9.3.6 Troubleshooting

The following common errors can occur in setting the database connectivity:

� Missing environment variable setting

Setting the environment variable INFORMIXDIR is required for starting the
Apache. If this variable is not set properly, the database connection also fails.

Example 9-29 shows the error message when you have improper
INFORMIXDIR set. The message occurs at the first line of any PHP program
which is generally the connection string. If you get this message, verify that
the INFORMIXDIR setting is correct.

Example 9-29 Unspecified error

Error!: SQLSTATE=HY000, SQLDriverConnect: -23101
[Informix][Informix ODBC Driver][Informix]Unspecified System Error =
-23101.

� Mismatched settings

Another important item affecting the connectivity is the setup of the Informix
runtime environment. Informix Connect or Client SDK provides the
connectivity at run time. If the settings between the environment variables and
the sqlhosts do not match, you receive messages similar to the one shown in
Example 9-30.

Example 9-30 Wrong connection information

/usr/local/bin/php pdoconnect.php
Error!: SQLSTATE=HY000, SQLDriverConnect: -25555
[Informix] [Informix ODBC Driver][Informix]Server ol_svr_custom is not
listed as a dbserver name in sqlhosts.
328 IBM Informix Developer’s Handbook

Chapter 10. User-defined routines

In this chapter, we how to create and use user-defined routines (UDRs). A UDR
is a routine that you create that can be invoked in an SQL statement by the
database server or from another UDR. A routine is a collection of program
statements that perform a particular task. By understanding UDRs, you can take
the next step and extend the database server, either a little bit or in steps that
lead to something bigger, such as a bladelet or DataBlade module.

This chapter includes the following topics:

� An overview of UDRs and database extensions
� Developing UDRs
� DataBlades and bladelets

Extending the database server requires an understanding of the components
that are required to implement the extension. An extension can be as simple as
one UDR or as complex as a new data type with many supporting routines. We
first discuss UDRs and user-defined types (UDTs) to provide the scope for what
is needed. Then we provide examples.

10
© Copyright IBM Corp. 2010. All rights reserved. 329

10.1 An overview of UDRs and database extensions

IBM Informix database servers have the built-in ability to retrieve, store,
manipulate, and sort a number of standard data types, some of which are unique
to Informix servers. A developer can choose to modify or extend the built-in data
types and to modify or extend how various operations work with the resulting new
data type extensions.

You can extend the data types using the following methods:

� Extend operations that are used to process built-in data types.
� Create complex data types based on built-in data types.
� Create UDTs, both distinct and opaque data types.
� Create new operations to process extended data types.

Database extensions and extended data types allow the developer to make
customized routines and functions transparent, because you have the capability
to actually build it into the database server. The transparency is visible as:

� Better performance through optimized routines, faster queries, and reduced
network traffic.

� Simpler applications in streamlined code and easy to upgrade applications.

� Transaction control with automatic recovery, backup, and rollback capability
that is provided by the server.

� Scalability because database extensions scale automatically with the
database size and user count.

In the context of discussing UDRs and database extensions, we also mention
DataBlade modules. A DataBlade module is a software package that extends the
functionality of the IBM Informix database server. Each package includes SQL
statements and supporting code written in an external language or in Stored
Procedure Language. A DataBlade module enables the same level of support for
new data types as the database server provides for built-in data types.
DataBlade modules can also use SQL queries or the DataBlade API to access
data types and routines in other DataBlade modules.

Note: Extended Parallel Server and Standard Engine support stored
procedures but not UDRs.
330 IBM Informix Developer’s Handbook

10.1.1 Considerations for UDRs

A UDR can be written using the IBM Informix Stored Procedure Language (SPL)
or with an external language. A routine written with SPL is simple to use and
easy to implement. An SPL-based UDR has flow-control extensions (conditional
clauses and while loops) and works with SQL statements. After the routine is
created and is ready to use, the database server parses, optimizes, and stores it
in system catalog tables so that it is ready to execute.

The system catalog tables are used to keep track of the information the database
server uses to manage the database server. UDR-related information is stored in
a small group of catalog tables that provide information about the UDR layouts.
UDRs include the following common catalog tables:

� sysprocedures table

Used to track the name and owner and to indicate whether the UDR is a
user-defined function or a user-defined procedure (functions return values but
procedures do not).

� sysprocauth table

Tracks who can execute the procedure.

� sysprocbody table

Contains the actual code for the SPL routines.

UDRs can also be written with an external language. The body of an
external-language routine allows language-based operations such as flow control
and looping, while also using special Informix library calls to access the database
server.

The database server stores information for external-language routines in the
following system catalog tables:

� sysprocedures table

The information kept in this table is same as the SPL UDR.

� sysroutinelangs table

This table tracks the language information.

� syslangauth table

This table tracks the users of the server who can use the particular external
language.

You need to use an appropriate compiler to parse and compile an
external-language routine into an executable format. We discuss this with
 Chapter 10. User-defined routines 331

specific examples of the language and API methods that are available for writing
these extensions.

The external languages that can be used are:

� C

To execute SQL statements in C UDRs, you must use the DataBlade API, and
you cannot use ESQL/C. To write routines in C, you need a C compiler. YOu
can find additional information about writing UDRs in C in the IBM Informix
DataBlade API Programmer’s Guide, Version 11.50, SC23-9429, and IBM
Informix DataBlade API Function Reference, Version 11.50, SC23-9428.

� Java

To write Java routines, you must use IBM Informix database server with
J/Foundation and with the Java Development Kit (JDK) to compile your Java
routines. You can find additional information about how to write Java UDRs in
J/Foundation Developer's Guide, Version 10.0, G251-2291.

10.1.2 About UDRs

Table 10-1 lists the UDR types that are supported by SPL, C, and Java in IBM
Informix database server.

Table 10-1 Supported UDR tasks by languages

UDR task SPL routines C routines Java routines

Cast function Yes Yes Yes

Cost function No Yes No

End-user routine Yes Yes Yes

Iterator function No Yes Yes

Negator function Yes Yes Yes

Opaque data type support No Yes Yes

Parallelizable UDR No Yes Yes

Statistics function No Yes Yes

Selectivity function No Yes No

User-defined aggregate Yes Yes Some

Operator function Yes Yes Yes

Operator-Class function Yes Yes Yes
332 IBM Informix Developer’s Handbook

The following terms are used in this table:

� Cast: A routine to convert from one data type to another. Built-in data types
have automatic casts between most data types. For UDTs, casting must be
defined from scratch.

� Cost function: A routine that informs the optimizer of cost factors for execution
of a particular UDR.

� End-user function: A routine that is used to encapsulate multiple SQL
statements into one function.

� Iterator function: A routine that is designed to return to its calling SQL
statement several times, returning a value each time.

� Negator function: A routine used for a NOT condition that involves a Boolean
UDR.

� Opaque data type support: When you create a new data type, you must
provide several basic support functions for your UDT. The following functions
are required:

– Text input and output routines
– Binary send and receive routines
– Text import and export routines
– Binary import and export routines

� Parallel UDR: A routine that can run in parallel within parallel queries.

� Statistics function: A routine to create distribution statistics for a UDT.

� Selectivity function: A routine to determine the percentage of rows for which a
Boolean UDR is expected to return true.

� User-defined aggregate: A SQL invoked routine that takes values selected
and returns information about those rows (a summarizing method).

� Operator function: A routine that is used within expressions with a symbol,
such as “+,-,<,>,=”. Built-in data type operators cannot be extended. All UDTs
require some operators to function within an SQL context.

� Operator-Class function: A set of operators that the server associates with
how to build an access method (that is, an index), how to arrange values in
the access method, how to select values based on operator function, and
ways to allow the query optimizer to consider using the access method to
return results for a query.

For more details about any of these functions and for details about functionality
that we do not discuss here, see IBM Informix User-Defined Routines and Data
Types Developer's Guide, Version 11.50, SC23-9438.
 Chapter 10. User-defined routines 333

Invoking a UDR
You can invoke a UDR implicitly or explicitly. Implicit invocation is the result of an
operator function, an implicit cast, or some type of query processing. For this
book, we mainly discuss explicit invocation. You can use either EXECUTE
PROCEDURE or EXECUTE FUNCTION statements to run a UDR.

When the database server executes an SQL statement that contains a UDR, it
loads the UDR executable code as a shared-object into memory. It determines
which shared-object file to load from the externalname column of the row in the
sysprocedures system catalog table that describes the UDR. The sysprocedures
entry is created when you register the UDR, as a result of the CREATE
FUNCTION or CREATE PROCEDURE statement.

In more general terms, when you invoke a UDR, the database server parses the
statement into syntactic parts, call the system catalog to resolve the routine
parts, generate a query plan, and then execute the query. If the query involves
more than one database, each database requires that all the UDRs and UDTs
must be registered in the participating databases.

10.1.3 Considerations for extending data types

A significant aspect of UDR is the support for an extended data type. IBM
Informix database servers have several built-in data types. Why do we need
more?

An extended data type is a new data type that has different core properties, new
functionality, and new operator methods that go beyond a basic data type.

As an example, consider a datetime data type. Imagine, as a programmer if you
had to add “a day and a half” to a specific datetime event. Intuitively, we
recognize that the value “‘day and a half” is an interval of time, but the database
serve does not recognize this construct as an interval. We need to convert it
manually to a usable interval, and then add it to a datetime value.

With a UDR, an unconventional interval name such as this can be passed
through a function, which translates it to an “normal” interval automatically,
applies the addition operation, and returns a datetime value with the result. To do
this, we apply a functional behavior change, which extends the data type. The
result of processes such as this can simplify a repeating data task and make the
development task easier.
334 IBM Informix Developer’s Handbook

A quick review of the data type hierarchy is useful. Figure 10-1 shows a summary
of these data types.

Figure 10-1 Hierarchy of data types in Informix servers

The extended data types can be either UDR types or complex data types. We are
especially interested in UDTs, which can be described as follows:

� Distinct: Internally, this data type is stored the same as a source data type,
but it is overlaid with different casts and functions defined beyond the basic
source type. The server sees distinct types as different from the source type.
It is necessary to tell the server:

– Source data type information and how the internal structure is defined.
– The functions of how this data type interacts with its internal structure.
– The operations that are valid with this distinct data type.
– Any secondary access methods on how to handle this type.
– Cast functions to move data in and out of the distinct type are automatic.

� Opaque: A fundamental, user-defined data type. It cannot be broken into
smaller pieces, although it can serve as the building block for other data
types. The internal structure of the opaque data type is invisible to the server.
When you define and use an opaque type, the developer must provide all of
the following:

– How the internal structure is defined.

– The functions that enable routines to interact with its internal structure.

– The operations that are valid with this distinct data type.

– Any secondary access methods on how to handle this type.

– Cast functions to move data in and out of the distinct type need to be
provided.
 Chapter 10. User-defined routines 335

10.2 Developing UDRs

To develop a UDR, plan it first and then write the routine. We follow the
recommendations given in the UDR and Data Types Developers Guide for
planning our routines:

� Use a sensible name.

� Avoid modal arguments (an argument in the function determines how the
function will work).

� Always declare routine parameter data types.

� Declare the type that is returned when the routine is returning a value

The source for an external routine resides in a separate text file. To prepare UDR
source code:

� You will compile the C-language UDR and store the executable version in a
shared-object (.so or .o on UNIX) file.

� Compile the Java-language UDR and store the executable version in a .jar
file.

You must install shared object files and .jar files on all database servers that
need to run the UDRs, including database servers involved in Enterprise
Replication (ER) and High-Availability Data Replication (HDR). The shared object
files and .jar files need to be installed under the same absolute path name.

For information about C UDRs, refer to IBM Informix DataBlade API
Programmer’s Guide, Version 11.50, SC23-9429 and IBM Informix DataBlade
API Function Reference, Version 11.50, SC23-9428. For information about Java
UDRs, refer to the J/Foundation Developer's Guide, Version 10.0, G251-2291.

10.2.1 UDR examples in SQL

You can use Informix Stored Procedure Language (SPL) statements to write
routines and then store these SPL routines in the database. SPL extends SQL
and helps to reduce SQL coding by minimizing the visible code in large SQL

Tip: Although not required, use the DataBlade Developer’s Kit (DBDK) to help
write UDRs is advantageous. DBDK books and software can help enforce
standards that facilitate migration between different versions of the database
server. Because external-language routines are external to the database, be
aware that you must compile the UDR source code and store it where the
database server can access it when the routine is invoked.
336 IBM Informix Developer’s Handbook

operations. It has the advantage that it is run as a server-side routine, the
executable code stays inside the engine, and it is optimized only as needed. The
end result is lower application startup costs and better performance. As an SQL
extension, SPL can do flow control, such as looping and branching. SPL routines
can also execute routines written in C or other external languages, and other
UDR routines can execute SPL routines.

In this section, we provide examples of UDRs written in SQL. As we do so,
consider the following rules for SQL UDRs:

� If you use any parameters, they must be declared as built-in or user-defined
data types.

� An SPL routine does not have access to the user state of its execution
sequence. If the routine is going to be called more than once and if you want
to retain information about previous executions in the transaction, use an SPL
routine that states WITH RESUME as a part of the RETURN statement for
multiple executions of the same SPL routine within the same routine
sequence.

� When an SPL routine is executed, the parameters (also known as the
dependency list) is checked. If it is determined that an item in the dependency
list needs reoptimization, optimization occurs at this point. If an item needed
in the execution of the SQL statement is missing (for example, a column or
table is dropped), an error is returned.

� UDRs can be overloaded, meaning that a function can have more than one
way to operate, depending on the list of data types that are provided as
parameters. There is a precedence hierarchy to decide how the parameter list
is executed. A precedence hierarchy to decide the execution sequence of the
parameters can be important if you have more than one UDR with the same
name but a different parameter list. For more information, see IBM Informix
User-Defined Routines and Data Types Developer's Guide, Version 11.50,
SC23-9438.

Using a stored procedure method for a UDR is simple, as long as you can
recognize the incoming and outgoing parameters properly. The incoming
parameters, which are provided in the function definition, must have data types
defined when the parameter is first created and declared. The parameter values,
which are to be returned from the function, also should have declared data types.
By following this general rule, you can avoid many of the initial problems you can
get with SPL UDRs.

For the routines with SPL, we use the Informix stores sample database, defined
as stores@demo_on.
 Chapter 10. User-defined routines 337

One variable in, one result out
For this example, we want a function that provides a count of all the orders that
are received in a numerical month (N) from the orders table of the stores
database. This example demonstrates what happens when selecting an
aggregating value, once.

Example 10-1 shows the function code and ways to invoke the function to get
output.

Example 10-1 CREATE FUNCTION new_orders (month_num INT)

CREATE FUNCTION new_orders (month_num INT)
RETURNING INT ;
DEFINE nrows INT;
SELECT COUNT(order_date) INTO nrows FROM orders
WHERE month(order_date)=month_num;
RETURN nrows;
END FUNCTION;

-- Execute it as a function:
EXECUTE FUNCTION new_orders(5);

(expression)
7

-- Execute it as a select statement.
-- Note that we have to force “first 1” as a criteria so we can assure we are
-- only getting one value. Otherwise we would get an error.

SELECT FIRST 1 new_orders(5) FROM orders;

(expression)
7

One variable in, several results out
Example 10-2 performs three SELECT statements, and each statement does an
aggregation, returning one value from each select. It returns three values and
labels each value in the returned result. This example shows how to aggregate
three separately selected value returns in one call and still not use a cursor.

Example 10-2 Selecting three and returning three

CREATE FUNCTION new_orders (month_num INT)
 RETURNING INT as TotalOrders,INT as ShippedOrders,INT as Backorders;
DEFINE nrows INT;
DEFINE mrows INT;
DEFINE b_rows INT;
338 IBM Informix Developer’s Handbook

SELECT COUNT(ship_date) INTO mrows FROM orders
WHERE month(ship_date)=month_num;

SELECT COUNT(order_date) INTO nrows FROM orders
WHERE MONTH(order_date)=month_num;

SELECT COUNT(order_date) INTO b_rows FROM orders
WHERE MONTH(order_date)=month_num AND ship_date IS NULL;

 RETURN nrows,mrows,b_rows;
END FUNCTION;

-- Since we are returning three values with labels, calling the execute
-- function is the most appropriate way to make our SQL call.

EXECUTE FUNCTION new_orders(5);

totalorders shippedorders backorders

 7 3 1

Using the WITH RESUME clause to return a cursor result
Example 10-3 collects better details for the new orders. To return a detailed
listing of orders made, it uses the WITH RESUME clause in the function. In this
case, we assume (and expect) more than one row is returned. So, the WITH
RESUME clause is needed.

Example 10-3 A WITH RESUME ROUTINE that uses a cursor

CREATE FUNCTION new_orders (month_num INT)
 RETURNING INT as Num, INT as ord_num;
DEFINE ord_num INT;
DEFINE Num INT;
LET Num=1;
FOREACH cursor1 FOR
 SELECT order_num INTO ord_num FROM orders
 WHERE month(order_date)=month_num
 RETURN Num, ord_num WITH RESUME;
 LET Num=Num+1;
 END FOREACH;
END FUNCTION;

EXECUTE FUNCTION new_orders(5);

------num ord_num-----

 1 1001
 2 1002
 3 1003
 4 1004
 Chapter 10. User-defined routines 339

 5 1005
 6 1006
 7 1007

Multi-table select using a cursor
Example 10-4 performs a multi-table join with a summary expression return and
a group by. We ask for all the orders placed in a specific month, the name of the
person placing the order, and the total amount for each order.

Example 10-4 A multi-table select using a cursor

CREATE FUNCTION new_orders (month_num INT)
 RETURNING INT as Ord_Num, char(15) as ord_fname,
char(15) as ord_lname, money(8,2) as Amt;
DEFINE ord_num INT;
DEFINE ord_fname char(15);
DEFINE ord_lname char(15);
DEFINE Amt money(8,2);
FOREACH cursor1 FOR
 SELECT o.order_num, c.fname,c.lname,sum(i.quantity*i.total_price)
 INTO ord_num, ord_fname, ord_lname, Amt
FROM orders o, customer c, items i
WHERE month(order_date)=month_num
AND o.customer_num=c.customer_num
AND i.order_num=o.order_num
group by o.order_num,c.fname,c.lname
 RETURN ord_num, ord_fname, ord_lname, Amt WITH RESUME;
 END FOREACH;
END FUNCTION;

10.2.2 UDRs in Java

You must distinguish between JDBC and Java Virtual Machine (JVM)
applications. You can use JDBC to write stand-alone applications. If you want to
connect with to databases that support Java, you typically write stand-alone
JDBC applications, because these applications require specific driver methods to
communicate with other database servers. When you write a Java UDR, you
must use the IBM Informix JDBC Driver, which is based on the JDBC 2.0 API.
The generated code is processed by a JVM that runs as a process inside IBM
Informix Server. The generated code (.jar file) is stored in an sbspace and can
also refer to a .jar file in a storage location outside of the server.

Java allows you to create UDRs, cast support functions, aggregates, and opaque
data type support routines. However, Java routines cannot handle row or
collection data types.
340 IBM Informix Developer’s Handbook

For ordinary UDR with IBM Informix database servers, you can use the Java
Developers Kit (version 1.5 at this writing). A JVM comes pre-installed with the
IBM Informix database server (with J/Foundation). To confirm it is present, make
sure that you have an existing directory path to the
INFORMIXDIR/extend/kraratoa directory.

Java-based UDR, when developed, is placed into a Java archive (.jar) file. The
.jar file is stored inside an sbspace, or it can have additional supporting files on
the file system. If the .jar file is large or perhaps proprietary, you can leave it on
the file system. Store smaller .jar files or files that you might want to update
frequently in the sbspace.

Configuration
Make sure that you use the JVM system that came with your server engine, and
make sure the onconfig file and environment variables are set to accurate
working paths. The environment settings for our testing setup had the following
variables in the environment:

JRE_HOME=/usr/lib/jvm/java/jre
JAVA_BINDIR=/usr/lib/jvm/java/bin
JAVA_HOME=/usr/lib/jvm/java
SDK_HOME=/usr/lib/jvm/java
JJDK_HOME=/usr/lib/jvm/java
JAVA_ROOT=/usr/lib/jvm/java

The JAVA_ROOT environment variable is mostly determined by the developer. It is
the path to the file system directory where you are developing your .jar files:

CLASSPATH=location_for_your_java_classes:.:.:.

The INFORMIXDIR/etc/ONCONFIG file also has a small group of parameters that
must have verified settings. The following parameters are standard:

JVPJAVAHOME $INFORMIXDIR/extend/krakatoa/jre
JVPHOME $INFORMIXDIR/extend/krakatoa
JVPPROPFILE $INFORMIXDIR/extend/krakatoa/.jvpprops
JVPJAVALIB /bin
JVPJAVAVM jvm

The JVPJAVALIB and JVPJAVAVM parameters in the onconfig file are important for
development. The following parameter specifies the name of the log file to which
Java problems are written (make sure the path exists):

JVPLOGFILE $INFORMIXDIR/jvp.log

If you are going to use external .jar files, you must add them to JVPCLASSPATH:

JVPCLASSPATH $INFORMIXDIR/extend/krakatoa/krakatoa.jar:$INFORMIXDIR/extend/krakatoa/jdbc.jar
 Chapter 10. User-defined routines 341

Routine examples in Java
In the examples that follow, we create our Java routines in /work/, which defines
the UNIX directory that we use for our working CLASSPATH. You must change
the directory path in some of the code expressions if you use a different directory.
After you compile the code, the source code is not used for execution, but keep it
in a safe place in case you want to improve it later.

A function extension
This example illustrates a simple way to extend functionality. This routine
provides an SQL function to “multiply a value times 10.” The developing
procedure is as follows:

1. Create a simple class file named Times.java in the working JVPCLASSPATH
directory. Example 10-5 shows the source code.

Example 10-5 A Java function to multiply a value times 10

/*Times.java */
public class Times {
 public static int TimesTen(int x) {
 return x * 10;
 }
}

2. At a command prompt, compile the file using the following command:

javac Times.java

3. Compress it into a .jar file:

jar cvf Times.jar Times.class

As this runs, it shows output similar to the following:

added manifest
adding: Times.class(in = 245) (out= 187)(deflated 23%)

4. Register the routine:

Start dbaccess to connect to the database and run the following SQL to
register and add the .jar file into our sbspace:

execute procedure sqlj.install_jar ("file://work/Times.jar" , "Times_jar");
Routine executed.

Note: The paths for .jar files that are added to JVPCLASSPATH are visible
only after you add them to the onconfig file and restart the database engine.
342 IBM Informix Developer’s Handbook

5. With the .jar file in storage and accessible, from dbaccess, we create a
function that calls our routine in the .jar file. See Example 10-6.

Example 10-6 Calling routine

create function times_ten(value int) returning int
 with (class = "jvp")
 external name "Times_jar:Times.TimesTen"
 language JAVA;

6. The procedure is ready to run. Test it in dbaccess:

EXECUTE function times_ten(13)

(expression)
130

For an alternate method, try:

SELECT ship_charge, times_ten(ship_charge) X10 FROM orders;

A Java UDR with two input parameters
This example demonstrates how to create a Java routine with multiple input
parameters. Java language and IBM Informix servers express decimals in
different ways. This example creates a new sales tax function, Salestax, that
includes a new Java function and the existing Times_ten function created in “A
function extension” on page 342.

We need to include an external standard Java library that has a math class. You
might find that multiplying decimal values in Java is different than what you might
be used to. In addition, Java uses a different naming convention than Informix
data types. If you get the class wrong or the library is incorrect, things simply do
not work, and you will get errors.
 Chapter 10. User-defined routines 343

We use the following procedure to create the salestax function:

1. Create a Java class called Tax.java, using an editor such as vi.
Example 10-7 shows the source code.

Example 10-7 The Tax.java class

/*Tax.java*/
import java.math.BigDecimal;
public class Tax {
public static BigDecimal salestax(BigDecimal x,BigDecimal xtax)
{
 BigDecimal ratePlusOne = xtax.add(BigDecimal.valueOf(1));
 BigDecimal afterTax = x.multiply(ratePlusOne);
 afterTax = afterTax.setScale(2, BigDecimal.ROUND_HALF_UP);
 return (afterTax);
 }
}

2. Compile the file. At a command prompt, run the following command:

javac Tax.java

3. Compress the file, and add it to the existing .jar file (named Times.jar).

jar cvf Times.jar Tax.class

As this runs, it shows a line similar to the following:

added manifest
adding: Tax.class(in = 546) (out= 318)(deflated 41%)

4. Add the updated .jar file to sbspace.

For this example, we want to update an existing function that already exists in
the sbspace .jar file. Because we cannot replace an existing function in a
sbspace .jar file directly, update an sbspace .jar function, we must replace
the entire .jar file. To do this, we must remove (drop) the sbspace .jar file,
then replace it with an updated version from our working path.

A .jar file in an sbspace must be empty to drop the .jar file. Drop all the
UDRs in the .jar file to empty it. Otherwise, you receive the following error
message:

“Invalid jar removal. All dependent UDRs not dropped”.

Our Times_jar file exists in the database. To drop the function, we start
dbaccess, connect to the database, then run the following command:

DROP FUNCTION times_ten;

Now, we can remove the .jar file:

EXECUTE PROCEDURE sqlj.remove_jar ("Times_jar");
344 IBM Informix Developer’s Handbook

5. Add the updated .jar file into sbspace. Run the following SQL:

EXECUTE PROCEDURE sqlj.install_jar ("file://work/Times.jar" , "Times_jar");

6. The updated .jar file is now in sbspace storage. Re-create the dropped
Times_ten function:

create function times_ten(value int) returning int
 with (class = "jvp")
 external name "Times_jar:Times.TimesTen"
 language JAVA;

7. Add the new function to call on the same .jar file:

create function salestax(value decimal,xtax decimal)
 returning decimal(8,2)
 with (class = "jvp")
 external name "Times_jar:Tax.salestax"
 language JAVA;

8. Now, can test the expanded function from dbaccess:

EXECUTE FUNCTION salestax(250.00,.065);

(expression)
266.25

As an alternative test using SQL, try:

SELECT o.order_num,
salestax (sum(i.quantity*i.total_price), .065) Amt_w_Tax

FROM orders o, items i WHERE month(order_date)=5
AND i.order_num=o.order_num group by o.order_num

Creating a routine that uses external Java APIs
This example demonstrates how to create a Java UDR that requires support from
one or more Java APIs that lie outside the database server. The import
references in the code indicate that an external Java API exists to help support
the UDR. The references on the import list remain outside the database server.
The JVM runs using the .jar file calls in the sbspace storage location and sends
calls to the external Java functions based on the import reference in the .jar file.

Note that the import reference does not have a full directory path. Any Java API
or .jar file that is not residing in an sbspace is external to the instance. To help
the server instance find external .jar files, you must supply all JAR API path
locations in the onconfig file.

Note: The onconfig file must be updated so the JVM knows the directory path
for any supporting APIs. The full path location for the supporting Java file
specified on an import list must be included in JVPCLASSPATH.
 Chapter 10. User-defined routines 345

For our example, JVPCLASSPATH is set to:

/usr3/11.50/extend/krakatoa/krakatoa_g.jar:/usr3/11.50/extend/krakatoa/jdbc_g.j
ar:/usr3/11.50/extend/krakatoa/jre/lib/rt.jar:/work/mailapi.jar:/work/activatio
n.jar:/work/smtp.jar

For our example to work, the engine needs the Java mail API classes. The files
that are required are mailapi.jar, activation.jar, and smtp.jar, which are
available at:

http://java.sun.com/products/javamail/downloads/index.html

To create the sendmail routine:

1. Install the downloaded .jar files, and add .jar files with full path to
JVPCLASSPATH.

In this example, the paths are /work/mailapi.jar, /work/activation.jar,
and /work/smtp.jar.

2. Create the file MailClient.java as shown in Example 10-8. You have to
update the italicized references in the example with your own information.

Example 10-8 An SQL based sendmail() UDR

---- MailClient.java ---
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;
import java.util.Properties;
public class MailClient
 {
 public static void send(String to, String text)
 {
 try
 {
 MailClient client = new MailClient();

 Properties props = System.getProperties();
 props.put("mail.smtp.host", "smtp.server.com");

 Session session = Session.getDefaultInstance(props, null);

 Message message = new MimeMessage(session);
 message.setFrom(new InternetAddress("Name_showing@fromfield"));
message.addRecipient(Message.RecipientType.TO, new InternetAddress(to));
 message.setSubject("Message from the database");
 message.setText(text);

 Transport.send(message);
 }
 catch(Exception e)
 {
 e.printStackTrace(System.out);
346 IBM Informix Developer’s Handbook

http://java.sun.com/products/javamail/downloads/index.html

 }
 }
 }
---- MailClient.java ---

3. Compile and compress your file:

javac MailClient.java
jar cvf MailClient.jar MailClient.class

4. Install the .jar file into the sbspace:

EXECUTE PROCEDURE sqlj.install_jar ("file://work/MailClient.jar" ,
"MailClient_jar");

Make sure JVPCLASSPATH is set as indicated in step 1.

5. Create the sendmail procedure from dbaccess:

CREATE PROCEDURE sendemail(to LVARCHAR, message LVARCHAR)
 WITH (class = "jvp")
 EXTERNAL NAME "MailClient_jar:MailClient.send"
 LANGUAGE JAVA;

6. Test the procedure:

EXECUTE PROCEDURE sendemail('dba@mybiz.com','Error deleting from table');

Troubleshooting tips
Sometimes you might have trouble getting a Java UDR to run. The following
points of exposure for errors are possible:

� At the time of a Java compile

If you get an error here, the issue relates to a Java language problem, most
likely resulting from syntax or a Java method. Consult a Java Programming
Language Guide for assistance.

� At the .jar installation point or later

Check the jvp.log at the path in the onconfig file specified by the JVPLOG
parameter. You should see no errors at the time of install, and no errors at run
time. When you start the server instance the JVM starts, .jar files load into
the process memory as needed. The MSGPATH file (online.log) often
reveals the success or failure of JVM and .jar file loading. If the files cannot
load, they cannot run.

� UDR runtime errors

If there are errors, study the Java error messages returned, and determine
the cause for whatever did not resolve.

Troubleshooting can be a trial and error approach. When you have an
understanding of how the provided UDR examples work, do them over again,
 Chapter 10. User-defined routines 347

and break something in the Java code. Go through the example with slightly
broken syntax and review the results. For example, in the BigDecimal code
example, change BigDecimal to Float or Double, and work through the example
again.

10.2.3 UDRs in C

The C programming language allows you to create UDRs, cast support functions,
aggregates, and opaque data type support routines. C can also handle row and
collection data types. Working with C UDR adds an extra layer of difficulty
because these routines have to be compiled using a compiler, specific to the
system and operating system where you have products installed. Compiled C is
not stored in sbspace, but rather it is stored outside the server.

In addition to compiler difficulties, it is a good idea to develop and test UDRs on a
development server and not in a production environment. C UDR code runs as a
database server process that works closely with internal structures. The routine
should not do anything that would negatively affect the database server. A poorly
designed C UDR is likely to crash the server. If you plan to work with C UDRs,
the following resources are good reference books:

� IBM Informix User-Defined Routines and Data Types Developer's Guide,
Version 11.50, SC23-9438

� IBM Informix DataBlade API Programmer’s Guide, Version 11.50, SC23-9429

� IBM Informix DataBlade API Function Reference, Version 11.50, SC23-9428

If you are interested in using C++ Datablade modules, the IBM Informix
Developer Zone that provides the latest recommendations on C++ programming
options at:

http://www.ibm.com/software/data/developer/informix

Routine examples in C
In this section, we undertake a few examples written in C. With Java, we have
portability that extends across platforms, but some of our functionality is limited.
C is flexible because it can extend the database by way of data types, new
functions, and new operators. For each database across an enterprise, the
extensibility that you provide through C must be specifically compiled with each
operating system. For the examples in this section, we use a Solaris system.

A simple function using C
For our first example, we start with a function similar to what we did in our Java
example, a multiplying function. For each of our C examples, we must include the
DataBlade API files (referenced in the example as mi.h and milib.h). The
348 IBM Informix Developer’s Handbook

http://www.ibm.com/software/data/developer/informix

DataBlade APIs provide the interface to allow C language calls to interface with
IBM Informix database SQL calls. To prevent a conflict with our times_ten Java
UDR function, we name this example times_five.

To create this routine:

1. Create the text file that holds the C code. Example 10-9 shows the source file
times.c.

Example 10-9 A C UDR that multiplies times five

#include <stdlib.h>
#include "mi.h"
#include "milib.h"

mi_integer* TimesFive(mi_integer value);

mi_integer* TimesFive(mi_integer value)
{
 return (mi_integer *) (value * 5);
}

2. Compile and link the C code.

The compile command (cc or gcc) depends on the operating system. The first
way to identify your compiler is to examine the text of man cc (on UNIX), or
check the command for your operating system compiler in the
INFORMIXDIR/release/en_us/0333/ids_machine_notes_vers.txt file.

At a minimum, your compile line for UDR preparation usually includes:

-DMI_SERVBUILD -KPIC -I$INFORMIXDIR/incl/public -I/$INFORMIXDIR/incl

Where

– -DMI_SERVBUILD is the flag to indicate that this is a server-oriented C UDR
application which uses the DataBlade API (required).

– -KPIC is the flag to indicate that the symbol table is dynamic (for UNIX and
Linux only).

– -I$INFORMIXDIR/incl/public and -I/$INFORMIXDIR/incl are the location
of the mi_ libs.

The compile command for our code sample (on Solaris) is:

cc -DMI_SERVBUILD -KPIC -I$INFORMIXDIR/incl/public -I/$INFORMIXDIR/incl -o
times.o -c times.c

Run the link command to put the compiled object file into our Blade library file:

ld -dy -G -Bsymbolic -o times.bld times.o
 Chapter 10. User-defined routines 349

3. Set the bld file permissions as user informix:

chmod 555 ./times.bld

4. In dbaccess, after connecting to the database, create the times_five
function:

CREATE FUNCTION times_five(value int) RETURNING int
 WITH (handlesnulls)
 EXTERNAL NAME "/work/times.bld(TimesFive)"
 LANGUAGE C;

Adjust the external work path as needed.

5. Test the routine:

execute function times_five(20);

(expression)
100

In Java UDR, the .jar file serves as a library (collection-repository) for all of the
compiled routines. In C, a collection of compiled routines is stored in a shared
library (.so or .o) file. On Windows, a shared object file has a .dll extension
(dynamic link library).

Creating a C routine using large object column
The next example explores the use of working with a large object column
reference. Without a text search DataBlade, searching a character large object
(CLOB) file for a particular value can be a laborious SQL task. This example
shows how to access a CLOB file, copy the CLOB contents into an LVARCHAR,
and search for a specific text item, while using a simple function. We create a C
file that handles two parameters. The first parameter is a CLOB column
reference, the second parameter is the LVARCHAR text value for our search. It
returns a count for the number of successful finds.

To implement this search routine:

1. Create the CLOB column search routine source file un.c as shown in
Example 10-10.

Example 10-10 A UDR for searching a CLOB

#include <ifxgls.h>
#include <mi.h>
#include <milib.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

typedef unsigned char byte;
mi_integer contains(MI_LO_HANDLE* loptr, mi_lvarchar* pattern, MI_FPARAM* fp);
350 IBM Informix Developer’s Handbook

mi_integer contains(MI_LO_HANDLE* loptr, mi_lvarchar* value, MI_FPARAM* fp)
{
mi_unsigned_integer crc = (mi_fp_argisnull(fp, 1) == MI_TRUE) ? 0 :
(mi_unsigned_integer)1;
 MI_CONNECTION *conn;
 MI_LO_SPEC *lo_spec = NULL;
 MI_LO_FD lo_fd;
 MI_LO_STAT *lo_stat = NULL;
 char *buff = NULL;
 char *pattern = NULL;
 mi_integer buffsize = 4096;
 mi_integer found=0;
 mi_integer result=0;

 pattern = mi_lvarchar_to_string(value);

 if ((conn = mi_open(NULL, NULL, NULL)) == NULL) return (mi_integer) -1;
 if ((buff = (char*)mi_alloc(buffsize)) == NULL) return (mi_integer) -2;
 if ((lo_fd = mi_lo_open(conn, loptr, MI_LO_RDONLY)) == MI_ERROR)
 return (mi_integer) -3;

 do {
 if ((result = mi_lo_read(conn, lo_fd, buff, buffsize)) == MI_ERROR)
 break;
 if (result == 0)
 break;
 if (strstr(buff,pattern)!=NULL)
 {
 found=1;
 break;
 }
 if (result < buffsize)
 break;
 } while(1);
 mi_lo_close(conn,lo_fd);
 if (buff)
 mi_free(buff);
 return (mi_integer)found;
}

2. Compile and link the C routine. We use the following Solaris compile line:

cc -DMI_SERVBUILD -KPIC -I$INFORMIXDIR/incl/public
-I$INFORMIXDIR/incl/public -I$INFORMIXDIR/incl/esql -I/$INFORMIXDIR/incl -o
un.o -c un.c

Here is the link line:

ld -dy -G -Bsymbolic -o un.bld un.o

3. Set the bld file permissions as user informix:

chmod 555 ./un.bld
 Chapter 10. User-defined routines 351

4. Create the function in dbaccess.

create function contains(clob,lvarchar)
returns integer
external name '/work/un.bld(contains)'
language C;

5. Set up for testing. Create a table and populate it with our c file.

CREATE TABLE tclob (c1 INT, c2 CLOB);
INSERT INTO tclob VALUES (1,filetoclob('un.c','server'));

6. Test the routine:

SELECT c2 FROM tclob;
SELECT CONTAINS(c2,'pattern') FROM tclob;
SELECT CONTAINS(c2,'nopattern') FROM tclob;
SELECT c1 FROM tclob WHERE CONTAINS(c2,'buff')=1;

Troubleshooting tips
To track down the cause of problems with C UDRs, the most affective approach
is to use a debugger. To debug your UDR, use a debugger that can attach to the
active server process and access the symbol tables of the dynamically loaded
shared object files. On UNIX and Linux, the debugger and dbx utilities meet these
criteria. To start a debugger, enter the following command at the shell prompt, in
which pid is the process identifier of the CPU or virtual processor:

debugger -pid

This command starts the debugger on the server virtual-processor process
without starting a new instance of the virtual processor. For more information
about available debugger commands, see the debugger manual page, and learn
more in the information center:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
dapip.doc/sii111026637.htm

10.3 DataBlades and bladelets

Your initial collection of UDRs increases over time. It might not be long until you
have UDRs, special functions, and stored procedure UDRs that reduce work
complexity and provide great functionality. If you choose not to write your own
DataBlade, you can still choose from a nice selection of DataBlade modules. Any
DataBlade module you use provides functions that might increase the usefulness
of business data dramatically or that might perhaps generate income for you—as
a software developer that develops and sells licensed DataBlades.
352 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.dapip.doc/sii111026637.htm

IBM Informix has several books on the subject of planning, designing, and
implementing DataBlades. With a taste of the programming examples presented
earlier in this chapter, you might be ready to take the next step and program a
DataBlade in C or Java. From a technical perspective, IBM Informix DataBlade
Developers Kit User's Guide, Version 4.20, G229-6366 is specifically oriented to
the development of DataBlade modules. It provides detailed help for
programming DataBlade modules in Java and C.

If you want to work with a DataBlade before you decide whether you have a need
to write your own, the sections that follow provide an overview of the DataBlades
that are available with IBM Informix Server.

10.3.1 Configuration

Configuration for a Datablade module requires the following steps:

1. Prepare the database serve.
2. Install the DataBlade.
3. Register the DataBlade.

Conceptually, the process is the same, regardless of the operating system and
hardware. Small differences exist in interface or command lines, which we will
point out.

Prepare the database
Database preparation involves setting up environment variables and making sure
the database you are going to use with a DataBlade is set to a logged database
in advance.

The environment settings required are as follows:

� On UNIX and Linux: LD_LIBRARY_PATH, INFORMIXSERVER, and
ONCONFIG

� On Windows: INFORMIXSERVER and ONCONFIG

When you get to the step for BladeManager usage, you also require an
environment setting for LD_LIBRARY_PATH.

Although a logged database is not required for every DataBlades, a logged
database can help avoid concurrency problems and thus is recommended. Also,
while it is the case that not all DataBlade modules require a logged database,
some of them do require logged sbspace. Keep this in mind as you install and
configure the DataBlade that you select.
 Chapter 10. User-defined routines 353

Installing the DataBlade
Any DataBlades that are installed with IBM Informix Servers are installed in
separate subdirectories under the INFORMIXDIR/extend directory. Several
subdirectories for DataBlades are established when the IBM Informix Server is
installed. There might be some variation to the list, based on your exact version
and operating system.

Example 10-11 shows the subdirectory listing for 11.50.UC6 on Linux with
J/Foundation.

Example 10-11 A sample INFORMIXDIR/extend subdirectory

opt/IBM/informix/extend:> ls

binaryudt.1.0 ifxmngr LLD.1.20.UC2 spatial.8.21.UC3
bts.2.00 ifxrltree.2.00 mqblade.2.0 web.4.13.UC4
ifxbuiltins.1.1 krakatoa Node.2.0 wfs.1.00.UC1

If you do not see the DataBlade directory reference for the one you want, you
must acquire it by way of a download or CD.

Installation on UNIX is simply a matter of uncompressing the new DataBlade
module into a temporary directory. After the files are expanded, run the
installation script, ./install. The ./install script creates a new module
directory under the INFORMIXDIR/extend directory. Some file expansions can
result in more than one new module. If there is more than one module, you must
run the ./install script for each one.

Installation on Windows systems requires that you go to the installation location
and run setup.exe. Select the Typical installation option. The other dialog
verification is the INFORMIXDIR location. With those items confirmed, the
software is installed. When the installation is complete, the module directory is
installed in the INFORMIXDIR\extend directory.

Registering the DataBlade
With a DataBlade directory in place, the active database server is not aware of
the DataBlade directories until the software is registered in the database.
Registration is the process of executing the SQL statements that create the
DataBlade module database objects and identify the DataBlade module shared
object file or dynamic link library to the database server.
354 IBM Informix Developer’s Handbook

With the release of 11.50.XC4, IBM Informix provides the following distinct
methods for DataBlade registration:

� BladeManager

Available with the first release of datablades, the BladeManager is an
interface that automates the registration process by performing a series of
SQL steps in the database engine.

� sysbldprepare()

This command is an Informix function for DataBlade registration. At its
simplest, you can run the command inside dbaccess with your target
database open to install a DataBlade. It has a few restrictions that are
described in IBM Informix DataBlade Module Installation and Registration
Guide, Version 4.20, G229-6368. To register the bts DataBlade with this
interface, use the following command:

EXECUTE FUNCTION sysbldprepare('bts.*','create');

To register a DataBlade module using BladeManager:

1. Start BladeManager:

– On UNIX or at the MS-DOS prompt, the BladeManager is started with the
blademgr command.

– To start BladeManager on a Windows system, select Start Programs
Informix program group name BladeManager or double-click the
BladeManager icon in the Informix program group.

If the BladeManager fails to start, it is either not installed or you do not have
the environment variables set, as noted in the previous section.

2. Set confirmations.

If you want an automatic confirmation after each step, turn the prompt on:

set confirm on

Commands run when you press the carriage return.

3. Connect to an Informix instance:

show servers
set server demo_on < Use you own server name for demo_on>

If you want to connect as a different user, try:

set user <username>

At the password prompt, enter your password. Validation does not occur until
connection, on the next step.
 Chapter 10. User-defined routines 355

To connect to a database, run one of the following commands:

list stores
register module_name database_name
unregister module_name database_name

The module_name represents the name of the DataBlade module directory.
These names typically follow the form of the DataBlade module name
followed by the version number.

When BladeManager registers a DataBlade module, it executes a series of SQL
CREATE statements to register each database object in the module. You must
have resource permissions on the database to register the DataBlade. In
addition, if your server has implemented the ONCONFIG EXTEND role, you
must be granted the EXTEND role by user informix.

If the registration of a module fails, BladeManager returns the database to its
prior state. To see the SQL statements that failed, look at the corresponding log
file and check the procedure in Appendix A. Troubleshooting Registration
Problems of IBM Informix DataBlade Module Installation and Registration Guide,
Version 4.20, G229-6368, for possible solutions.

Occasionally, DataBlade modules have more than one interface. If there are
additional modules, there are also dependencies. You have to make sure that
each of the interfaces are registered correctly in order for the DataBlade to work.
BladeManager automatically checks for dependencies and registers any
dependencies it might need. If the BladeManager cannot do the registration, it
will prompt you to do so manually.

Important: BladeManager does not verify the integrity of DataBlade modules
that have additional interfaces, nor does it not check for the presence of
required database objects.

Datablade modules written in the Java language can only be registered in IBM
Informix Servers with J/Foundation database servers.
356 IBM Informix Developer’s Handbook

10.3.2 IBM Informix provided DataBlades

Table 10-2 the DataBlades that are available with IBM Informix database servers.

Table 10-2 Informix provided DataBlades

IBM Informix
DataBlade
module name Description Special notes

Large Object
Locator

A foundation Datablade module for large
objects management that can be used by
other modules that create or store
large-object data.

Available on
standard install
(LLD.1.20.UC2)

MQ DataBlade Allows IBM Informix database
applications to communicate with other
MQSeries® applications with MQ
messaging.

Available on
standard install
(mqblade.2.0)

Binary DataBlade This module includes binary data types to
store binary-encoded strings that can be
indexed for quick retrieval.

Available on
standard install.
(binaryudt.1.0)

Basic Text Search Permits text search of words and phrases
in an unstructured document repository
stored in a column of a table.

Available on
standard install.
(bts.2.00)

Node DataBlade This module is for the hierarchical data
type, to represent hierarchical data within
a relational database.

Available on
standard install.
(Node.2.0)

Web Feature
Service

This module is an add-on to allow Open
Geospatial Consortium (OGC) web
feature service as a presentation layer for
the Spatial and Geodetic DataBlade
modules

Available on
standard install.
(wfs.1.00.UC1)

J/Foundation
krakatoa

A library of classes and interfaces that
allow programmers to create and execute
Java UDRs that access Informix database
servers

Available as a part
of Informix Server
with J/Foundation

ifxbuilt-ins This is not really a DataBlade, but it sets
up definitions and functions for the
standard data types offered in the informix
server.

Available on
standard install
(ifxbuiltins.1.1)

ifxmngr.2.00 This is the API that supports the
BladeManager.

Available on
standard UNIX
install
 Chapter 10. User-defined routines 357

ifxrltree.2.00 This is a foundational, multidimensional,
index called “Region tree” (R-tree) (also
known as Range Tree). This blade is
needed for both spatial and time related
data management.

Available on
standard install

Image Foundation This module is a foundation DataBlade
which provides a base on which new or
specialized image types and image
processing technologies can be added or
changed. Because the foundation is open,
secure, and scalable, it provides a clear
path toward reusing and repurposing
valuable image assets.

No charge
download

Excalibur Text
Search

This module enables provides extensive
text-searching capabilities; It supports
full-text indexing, including extensive
fuzzy-search logic for indexing scanned
text. Can search document types
including: ASCII, Word, Excel, HTML,
PowerPoint, WordPerfect, and PDF.
Includes an adaptive pattern recognition
process (APRP) and capabilities such as
multiple stop-word lists, proximity
searching and synonym lists.

License fee applies

Geodetic This blade supports global space- and
time based queries. It is designed to treat
earth as a globe rather than a flat plane.
Supports client-side Geographic
Information Systems (GIS) software.

License fee applies

Spatial This blade transforms locations and
traditional 2-d map data into useful
information. Uses SQL-based spatial data
types and functions that can be used
directly through standard SQL queries or
with client-side Geographic Information
Systems (GIS) software.

No charge
download

IBM Informix
DataBlade
module name Description Special notes
358 IBM Informix Developer’s Handbook

10.3.3 Developing a bladelet routine

We can define a bladelet as a small, unofficial DataBlade module. It is meant to
be useful (and complete with source code) from the time you set it up, but it
becomes your own application (with no support or warranty). If you have tried out
our UDR development examples, you have a bladelet.

As you might have observed from having to drop and re-create the JAR API in
the server in our earlier example, you can understand that if you have a large
number of UDRs and have gone to the trouble of creating user-defined data
types, the whole package of tasks that are required to set up, change, or update
a DataBlade object inside the server might not be a convenient task.

On a large scale, if you have API dependencies, dozens of UDRs, and other
DataBlade related objects, you will want to move them and install them as a
package. IBM Informix provides a Windows-based interface for this, which has
the ability to do the package preparation work for you. The package preparation

TimeSeries This module supports data for managing
time-series and temporal data. A “time
series” is any set of data that is accessed
in sequence by time and can be
processed and analyzed in a
chronological order.

License fee
applies.

Video Foundation This blade allows you to incorporate video
servers, external control devices,
compression codes, and cataloging tools
to manage video content and metadata or
information about the content. Allows
metadata elements in the database, while
allowing video content to be maintained
on disk, video tape, video server, or other
external storage devices.

License fee
applies.

Web This module supports most web server
APIs and has a web client application to
build and run SQL queries to work with
your database. Enables customized web
applications. Allows you to track
persistent session variables between
AppPages.

License fee applies

IBM Informix
DataBlade
module name Description Special notes
 Chapter 10. User-defined routines 359

interface, called BladeSmith, allows you to populate a properties definition
dictionary.

When the properties are all defined and you proceed, BladeSmith creates,
assembles, and arranges a directory structure with a complete tree layout of all
the components that are required and handled in a DataBlade registration
process. The resulting directory tree layout and assembly pieces provide a
prepared package that is ready to ship to an operating system of your choice.
Likewise, any language source code that is output for the preparation task is
parcelled out for the appropriate component nodes also.

The dispensation for the BladeSmith file components and directory structure is
laid out based on the type of component node, as described in Table 10-3.

Table 10-3 BladeSmith file package creation layout

For further information about creating datablade objects using BladeSmith
generating files, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
dbdk.doc/sii-smith-27272.htm

For further information or examples of existing bladelets and downloads
developed by users, refer to:

http://www.ibm.com/developerworks/data/zones/informix/library/samples/db_downlo
ads.html

There is also a downloads page that features bladelets at the International
Informix Users Group site called “ORDBMS - Object-Relational Database
Extensibility, DataBlades” at:

http://www.iiug.org/software/index_ORDBMS.html

Component node What is generated

Source All source code in the coding languages you use for your
DataBlade module objects

Client Client code (ActiveX or Java)

Server Server code in the coding language you specified for BladeSmith

Individual language Source code for the represented language (C, Java, or SPL)
360 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.dbdk.doc/sii-smith-27272.htm
http://www.ibm.com/developerworks/data/zones/informix/library/samples/db_downloads.html
http://www.iiug.org/software/index_ORDBMS.html

Chapter 11. Working with Ruby on Rails

This chapter contains information about how to develop applications against an
IBM Informix database using the Ruby programming language and the Ruby on
Rails web development framework.

In this chapter, we discuss the following topics:

� A brief overview of Ruby on Rails
� Setup and configuration
� Database operations
� Using the Rails Adapter with Ruby Informix
� Using the Rails Adapter with IBM_DB

11
© Copyright IBM Corp. 2010. All rights reserved. 361

11.1 A brief overview of Ruby on Rails

Ruby is a open source programming scripting language with a focus on simplicity
and productivity. Ruby is similar to other scripting languages like Perl or Python
with the difference that Ruby is an object-oriented language. Ruby is both
technology- and platform-independent. You can find implementations of the Ruby
run time on C, Java, and even .NET, making Ruby a useful option for any
scripting need.

For more information about the Ruby language, refer to:

http://www.ruby-lang.org/en/about/

Rails is an open source Ruby framework for developing database-backed web
applications. Rails expands the object-orientated core design of Ruby, helping
developers to build websites and applications with minimum coding efforts.

Rails is based on two key principles:

� Convention over configuration (CoC), where developers need to focus only
on the exceptions to the conventions. Every other aspect of the application,
from design to implementation, is done automatically by the defined
conventions.

The conventions define rules such as use a plural for the table names. For
example, if the application uses an entity called Book, the table that stores
this entity must be called Books, and if it stores details about a Person, the
table must be called People.

� Don’t Repeat Yourself (DRY). Information is located in one place only.
Database object definitions, documentation, and configuration scripts all are
kept in one location and are consulted when information about them is
required.

For more information, refer to:

http://rubyonrails.org/documentation
362 IBM Informix Developer’s Handbook

http://www.ruby-lang.org/en/about/
http://rubyonrails.org/documentation

11.1.1 Architecture of Ruby on Rails

Ruby on Rails is built with the Model, View, Controller (MVC) architecture that is
typically used in web-based GUI programming. This architecture has three main
concepts:

� Model

The business logic of the system, which encompasses the persistence layer
because it interacts with a database back end.

� View

The GUI interface of the model that is visible to the user. One Model can have
many views.

� Controller

The action taken by the user using the view. The controller takes inputs from
the user through the view and executes the business logic encapsulated in
the model.

The Rails framework provides a set of utilities and components that are designed
to facilitate the development of web applications:

� Rake is a build tool that is bundled with the Ruby programming language. It is
the equivalent to the make command on UNIX.

� WEBrick is the web server that is bundled with Ruby on Rails.

� ActiveRecord is the object-relational mapper of Rails and provides for
persistence. It presents the database table as a class, which in Rails is called
model.

� Action Controller is the component that manages the controllers in a Rails
application. It also processes and dispatches incoming requests.

� Action View manages the views in a Rails application.

11.1.2 Ruby Driver and Rails Adapter

IBM Informix supports database access for client applications written in the Ruby
programming language and web application development with the Rail
framework.

Ruby Driver
To use an database with Ruby, the application requires a Ruby driver. This driver
provides the layer that connect the Ruby run time with the database server.
 Chapter 11. Working with Ruby on Rails 363

The following drivers allow Ruby to connect to an IBM Informix database:

� The Ruby Informix driver is an open source project supported by the open
source community. It allows Ruby to connect to any IBM Informix database
server. The Ruby driver is developed using the IBM Informix ESQL/C
language that provides full support for all the Informix database features and
data types. Because it uses the Informix Client Software Development Kit
(Client SDK) libraries,

� Ruby Driver for IBM Data Servers driver (IBM_DB) is provided, supported,
and developed by IBM as an open source project. The Ruby driver is bundled
together with the Rails Adapter in the Rails Adapter/Driver for IBM Data
Servers package.

Rails Adapter
A Rails Adapter is a Ruby script that allows you to use a specific Ruby driver
within the Rails framework. It provides the required Ruby objects, for example the
ActiveRecord object, that enable the full use of the Ruby driver inside the Rails
framework.

IBM Informix supports the following Rails adapters:

� informix_adapter.rb, used in conjunction with the Ruby Informix driver.
Requires Client SDK libraries for the communication with the Informix
database server.

� ibm_db_adapter.rb, used with the Ruby Driver for IBM Data Servers.
Requires the IBM Data Server Driver for ODBC and CLI package.

Both adapters are available from the Ruby repository as Ruby gems. Ruby gems
are self-contained packages that contain all the libraries, source files, and scripts
needed for the Ruby component.

11.2 Setup and configuration

This section describes how to set up and configure both Ruby drivers and Rails
adapters for use with an IBM Informix database.

11.2.1 Ruby Informix driver

The Ruby Informix driver is available for download at the SourceForge website at:

http://rubyforge.org/projects/ruby-informix
364 IBM Informix Developer’s Handbook

http://rubyforge.org/projects/ruby-informix

You can use the Ruby gem utility to download the Ruby Informix driver
automatically from the Ruby repository and install it in the Ruby environment.

Run the following command from your Ruby session to install the Ruby Informix
driver:

gem install ruby-informix

Because the driver shared library, informixc.so, is built during the installation
process, the environment should contain the correct settings for compiling
ESQL/C applications. Refer to Chapter 4, “Working with ESQL/C” on page 125
for more information about ESQL/C settings.

You can find more information about the installation process in the README file
inside the gem directory. See Example 11-1 for the list of files that are included
with the Ruby Informix driver.

Example 11-1 The gem directory

Directory of C:\work\Ruby187\lib\ruby\gems\1.8\gems\ruby-informix-0.7.3

03/07/2010 19:34 <DIR> .
03/07/2010 19:34 <DIR> ..
03/07/2010 19:19 8,383 Changelog
03/07/2010 19:19 1,470 COPYRIGHT
03/07/2010 19:29 <DIR> ext
03/07/2010 19:35 <DIR> lib
03/07/2010 19:19 4,500 README
03/07/2010 19:19 <DIR> test
 3 File(s) 14,353 bytes
 5 Dir(s) 76,168,769,536 bytes free

Configuration
The Ruby Informix uses the same connectivity information as other Client SDK
components. It uses the INFORMIXDIR environment variable to locate the
libraries and resources such as error message files or configuration files.

By default, the Ruby driver connects to the database server specified in the
INFORMIXSERVER environment variable. Same as the other Client SDK
components, the information regarding the INFORMIXSERVER value is stored
on the sqlhosts file or the Windows registry. For more information, refer to
“Connectivity on UNIX” on page 27.

The shared library search path variables, for example, LD_LIBRARY_PATH or
SHLIB_PATH, must contain the $INFORMIX/libl and $INFORMIX/lib/esql
directories. Otherwise, the Ruby driver might fail to load the ESQL/C libraries that
it requires for work.
 Chapter 11. Working with Ruby on Rails 365

Data types
The Ruby Informix driver provides the data types to be used against an IBM
Informix database. The driver provides specific types such as
Informix::IntervalYTM or Informix::Slob to handle specific Informix types.

Table 11-1 shows the data type mapping between the Ruby Informix driver and
the Informix database.

Table 11-1 Ruby Informix data type mapping

Verifying connectivity
Ruby includes an interactive shell called irb that you can use to run simple Ruby
statements. The irb is located in the bin directory of the Ruby installation.

The driver name used inside the Ruby scripts to reference the Ruby Informix
driver is informix.

To test whether the Ruby driver can connect to a database, you must load the
Ruby driver and then create a connection using the Ruby Informix object.

Informix data type Ruby data type

SMALLINT, INT, INT8, FLOAT, SERIAL
and SERIAL8

Numeric

CHAR, NCHAR, VARCHAR,
NVARCHAR

String

DATE Date

DATETIME TIME

INTERVAL Informix::IntervalYTM, Informix::IntervalDTS

DECIMAL, MONEY BigDecimal

BOOL TrueClass, FalseClass

BYTE, TEXT StringIO, String

CLOB, BLOB Informix::Slob
366 IBM Informix Developer’s Handbook

Example 11-2 demonstrates how to load the Ruby Informix driver and connect to
an IBM Informix database. The fist command, require 'informix', tells the
Ruby run time to load the Ruby Informix driver. After that, it creates a Ruby
Informix connection object and prints the database version information.

Example 11-2 Testing connection with Ruby informix

C:\work>irb
irb(main):001:0> require 'informix'
=> true
irb(main):002:0> db=Informix.connect('stores_demo','informix','password')
=> #<Informix::Database:0x8176110>
irb(main):003:0> puts db.version
IBM Informix Dynamic Server Version 11.50.FC6
=> nil
irb(main):004:0>

11.2.2 Data Server Ruby driver

The Data Server Ruby driver uses the Data Server CLI driver to connect the
Informix database. It uses the DRDA protocol so the version of the IBM Informix
database server must be 11.10 or 11.50.

The driver is included with IBM Data Server Driver and is also available to
download directly from the RubyForge website:

http://rubyforge.org/projects/rubyibm/

You can install the complete package using the Ruby gem utility by running the
following command from a Ruby session:

gem install ibm_db

For information about the build and setup process for Data Server Driver, consult
the README file in the driver directory.

Example 11-3 shows the Data Server Ruby driver directory.

Example 11-3 The ibm_db gem directory

Directory of C:\work\Ruby187\lib\ruby\gems\1.8\gems\ibm_db-0.10.0-x86-mswin32

03/07/2010 17:30 <DIR> .
03/07/2010 17:30 <DIR> ..
03/07/2010 17:30 6,063 CHANGES
03/07/2010 17:30 <DIR> ext
03/07/2010 17:30 1,656 init.rb
03/07/2010 18:06 <DIR> lib
 Chapter 11. Working with Ruby on Rails 367

http://rubyforge.org/projects/rubyibm/

03/07/2010 17:30 1,088 LICENSE
03/07/2010 17:30 299 MANIFEST
03/07/2010 17:30 13,402 README
03/07/2010 17:30 <DIR> test
 5 File(s) 22,508 bytes
 5 Dir(s) 76,167,290,880 bytes free

You can find additional information regarding the Ruby driver for IBM Data
Servers at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv
.ruby.doc/doc/t0052765.html

On some platforms, such as Windows operating system platforms, the shared
library for the Ruby driver is already included in the package. Therefore, there is
no need for a C build environment.

Example 11-4 shows the Ruby driver directory from Data Server Client on a
Windows system after the installation.

Example 11-4 Windows system Data Server Ruby directory

C:\work>dir "C:\Program Files\IBM\IBM DATA SERVER DRIVER\ruby"
 Volume in drive C is W2003
 Volume Serial Number is 50DA-70D7

 Directory of C:\Program Files\IBM\IBM DATA SERVER DRIVER\ruby

17/05/2010 02:16 <DIR> .
17/05/2010 02:16 <DIR> ..
30/05/2009 11:09 198,144 ibm_db-0.10.0-mswin32.gem
 1 File(s) 198,144 bytes
 2 Dir(s) 76,167,372,800 bytes free

C:\work>

Configuration
The Data Server Ruby driver uses the Data Server ODBC/CLI driver for the
connection to the database.

The configuration details are the same as with the ODCB/CLI driver. These
details are usually kept in the db2profile.ini file. Refer to 2.2.3, “Setting up IBM
Data Server drivers” on page 43 for detailed information about Data Server
Driver configuration.
368 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.ruby.doc/doc/t0052765.html

Data types
There are no specific Ruby objects to use Informix data types. Data Server Ruby
driver supports the same Informix data types as Data Server Driver for CLI.

Verifying connectivity
We use an irb session to test the connectivity against an IBM Informix database
server.

The reference name of the Data Server Ruby driver is ibm_db. You must load this
driver before creating the Ruby connection object.

Example 11-5 shows how to load the Ruby driver and how to connect to the
Informix server.

Example 11-5 Testing connection with data server Ruby driver

C:\work>irb
irb(main):001:0> require 'mswin32/ibm_db'
=> true
irb(main):002:0> db=IBM_DB.connect 'dsc_dsn','informix','password'
=> #<IBM_DB::Connection:0x81fb6d0>
irb(main):003:0>

First, load the Ruby driver with require 'mswin32/ibm_db'. Then, open the
connection using the IBM_DB::connect method.

You can also made a dsn-less connection by specifying all the required
parameters in the connection string as follows:

IBM_DB.connect 'DRIVER={IBM DB2 ODBC DRIVER};DATABASE=stores_demo;
HOSTNAME=kodiak;PORT=9089;PROTOCOL=TCPIP;UID=informix;PWD=password;', '', ''

11.2.3 Rails adapters

The Ruby Informix Rails Adapter provides the Ruby ActiveRecord object that
makes the use of the Ruby driver to work on the Rails framework possible.

The Rails Adapter for the Ruby Informix driver is a free download that is available
at:

http://rubyforge.org/projects/rails-informix/

Note: Because we use the Windows version of the Ruby driver, we must prefix
the driver name with the mswin32 directory.
 Chapter 11. Working with Ruby on Rails 369

http://rubyforge.org/projects/rails-informix/

The Rails Adapter can be installed automatically as a Ruby gem using the gem
utility. Example 11-6 shows how to install the Ruby Informix adapter.

Example 11-6 Installing the Ruby Informix adapter

C:\work>gem install activerecord-informix-adapter -v 1.1.1
Successfully installed activerecord-informix-adapter-1.1.1
1 gem installed
Installing ri documentation for activerecord-informix-adapter-1.1.1...
Installing RDoc documentation for activerecord-informix-adapter-1.1.1...

C:\work>

The configuration of the adapter depends on the version of Rails that is installed
in the Ruby environment. On versions older than 2.x, you need to copy the
informix_adapter.rb adapter script file into the connection_adapters directory.

Example 11-7 shows the connection_adapter directory with both Rails adapters
installed.

Example 11-7 The connection _adapter directory

Directory of
C:\work\Ruby187\lib\ruby\gems\1.8\gems\activerecord-1.15.6\lib\active_record\co
nnection_adapters

3/07/2010 18:02 <DIR> .
3/07/2010 18:02 <DIR> ..
3/07/2010 17:01 <DIR> abstract
3/07/2010 17:01 5,235 abstract_adapter.rb
3/07/2010 17:01 6,957 db2_adapter.rb
3/07/2010 17:01 27,749 firebird_adapter.rb
3/07/2010 17:01 30,751 frontbase_adapter.rb
3/07/2010 17:30 70,854 ibm_db_adapter.rb
3/07/2010 20:06 9,916 informix_adapter.rb
3/07/2010 17:01 13,774 mysql_adapter.rb
3/07/2010 17:01 11,531 openbase_adapter.rb
3/07/2010 17:01 25,897 oracle_adapter.rb
3/07/2010 17:01 21,513 postgresql_adapter.rb
3/07/2010 17:01 13,162 sqlite_adapter.rb
3/07/2010 17:01 22,087 sqlserver_adapter.rb
3/07/2010 17:01 22,622 sybase_adapter.rb
 13 File(s) 282,048 bytes
 3 Dir(s) 76,166,725,632 bytes free
370 IBM Informix Developer’s Handbook

When using versions of Rails older than 2.x, it is also required to include the
reference name of the Ruby driver in the RAILS_CONNECTION_ADAPTER
parameter in the ActiveRecord Ruby script (see Example 11-8).

Example 11-8 The active_record file

C:\work\Ruby187\lib\ruby\gems\1.8\gems\activerecord-1.15.6\lib>grep informix
active_record.rb
 RAILS_CONNECTION_ADAPTERS = %w(mysql postgresql sqlite firebird sqlserver
db2 oracle sybase openbase frontbase informix ibm_db)

C:\work\Ruby187\lib\ruby\gems\1.8\gems\activerecord-1.15.6\lib>

After creating a Rails project, you must update the project configuration file that
contains the database information, database.yml, with the connection details of
the IBM Informix database. This file is located in the <project>/config directory
and has three sections:

� Development
� Test
� Production

These sections point to databases on the respective environments. The
database connectivity properties include:

� adapter: The Ruby driver used. You do not have to give the complete version.
� database: Database to which to connect.
� username and password: To connect to the Informix server.
� server: The system on which the Informix server is running.
� port: The DRDA port on the Informix server.

Example 11-9 shows a typical database.yml file with the details for an IBM
Informix database. The Rails application is named stores7, and we connect to
an Informix server called demo_on.

We use the Ruby Informix driver reference name for the adapter parameter
informix. The server parameter identifies the Informix server to connect to. The
information about the Informix server, such as host and port, is retrieved from the
sqlhosts file or Windows registry.

Example 11-9 The database.yml file for the Ruby informix Adapter

C:\work\stores7\config>type database.yml

development:
 adapter: informix
 database: stores7
 pool: 5
 timeout: 5000
 Chapter 11. Working with Ruby on Rails 371

 server: demo_on
 username: informix
 password: password

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 database: stores7
 username: root
 password:
 host: localhost

production:
 adapter: informix
 database: stores7
 pool: 5
 timeout: 5000
 server: demo_on
 username: informix
 password: password

C:\work\stores7\config>

Rails Adapter for IBM Data Server
The Rails Adapter for the IBM Data Server Ruby driver is bundled with the Ruby
driver. It is installed when the Ruby driver is installed.

In the same way as with the Ruby Informix Rails Adapter, if the Rails Adapter for
IBM Data Server is installed on a version of Rails older than 2.x, the adapter
script (informix_adapter.rb) must be copied in the connection_adapter
directory, and the RAILS_CONNECTION_ADAPTER parameter in the
active_record.rb Ruby script has to be updated.

The database configuration file for a Rails project, database.yml, has to be
updated with the details for the Informix server.

Example 11-10 shows a database.yml file that is used in a Rails project that
connects to an IBM Informix database.

Example 11-10 The database.yml file for the Rails Adapter for IBM Data Servers

C:\work\stores7\config>type database.yml

development:
 adapter: ibm_db
372 IBM Informix Developer’s Handbook

 database: stores7
 pool: 5
 timeout: 5000
 host: kodiak
 port: 9089
 username: informix
 password: password

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 database: stores7
 username: root
 password:
 host: localhost

C:\work\stores7\config>

The adapter parameter is set to the reference name of the Data Server Ruby
driver ibm_db. It also contains the host name and the port parameter with the
details about the DRDA Informix instance. These details are the same as used in
the Data Server driver for ODBC/CLI.

For a list of all the parameters, refer to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbcli
ent.ruby.doc/doc/t0052780.html

11.3 Database operations

This section provides examples of using both Ruby drivers to perform basic
operations against an IBM Informix database server. It also demonstrates how to
use the Rails Adapter to create basic web applications.
 Chapter 11. Working with Ruby on Rails 373

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbclient.ruby.doc/doc/t0052780.html

Using Ruby Informix driver
In this section, we discuss the basic database operation using the Ruby Informix
driver.

Connection to the database
Example 11-11 shows how to connect to an Informix database. The database
name, user name, and password are passed as the parameters in the command
line.

Example 11-11 The ifx_connect.rb output

C:\work>type ifx_connect.rb
load the informix driver
require 'informix'
Connect to the database
db = Informix.connect(ARGV[0],ARGV[1],ARGV[2])
print database information
print "Connected to #{db.version}"
db.close

C:\work>ruby ifx_connect.rb stores_demo informix password
Connected to IBM Informix Dynamic Server Version 11.50.FC6
C:\work>

Getting information about a table
Example 11-12 demonstrates how to use the Ruby connection object to retrieve
metadata information about the state table. It uses the columns() method of the
Informix connection object to retrieve a Ruby array with all the metadata
information.

Example 11-12 The ifx_metadata.rb output

C:\work>cat ifx_metadata.rb

load the informix driver
require 'informix'
Connect to the database
db = Informix.connect(ARGV[0])
print database information
print "Connected to #{db.version}\n"
db.columns(ARGV[1]).each {
 |name| name.each {|elem| print " #{elem[0]} #{elem[1]}\n"}
}
db.close
C:\work>ruby ifx_metadata.rb stores_demo state
Connected to IBM Informix Dynamic Server Version 11.50.FC6
 precision 0
374 IBM Informix Developer’s Handbook

 type 0
 scale 0
 length 2
 xid 0
 nullable true
 name code
 stype CHAR
...

Executing a simple SQL statement
Using the Ruby driver, you can run an SQL statement directly from the Ruby
connection object or through a prepared statement object.

Example 11-13 demonstrates how to run a simple SQL statement using a
prepared statement Ruby object. The execute() method returns the number of
affected rows.

Example 11-13 The ifx_execute.rb output

C:\work>cat ifx_execute.rb

load the informix driver
 require 'informix'
Connect to the database
db = Informix.connect(ARGV[0])
print database information
 print "Connected to #{db.version}\n"

create a prepare object with the SQL passed
stmt = db.prepare(ARGV[1])
Execute the prepared statement
 rc=stmt.execute()
 print "Result=#{rc}"
 db.close

C:\work>ruby ifx_execute.rb stores_demo "DELETE from STATE where CODE='AR'"
Connected to IBM Informix Dynamic Server Version 11.50.FC6
Result=1
C:\work>
 Chapter 11. Working with Ruby on Rails 375

If the SQL statement returns only one row, you can use the execute() method to
retrieve that value (see Example 11-14).

Example 11-14 The ifx_execute.rb output

C:\work>ruby ifx_execute.rb stores_demo "SELECT sname FROM state WHERE
code='CA'"
Connected to IBM Informix Dynamic Server Version 11.50.FC6
Result=snameCalifornia
C:\work>

Using parameters
Example 11-15 shows how to prepare and execute a parametrized INSERT
statement using the Ruby driver.

Example 11-15 The ifx_parameters output

C:\work>cat ifx_insert.rb

load the informix driver
 require 'informix'
Connect to the database
db = Informix.connect('stores_demo')
print database information
 print "Connected to #{db.version}\n"
create a prepare object with the SQL passed
 stmt = db.prepare('INSERT INTO state(code,sname) VALUES (?,?)')
Execute the statement using parameters
 rc=stmt.execute(ARGV[0],ARGV[1])
Execute the prepared statement
 print "Result=#{rc}"
 db.close

C:\work>ruby ifx_insert.rb AR Arizona
Connected to IBM Informix Dynamic Server Version 11.50.FC6
Result=1

C:\work>
376 IBM Informix Developer’s Handbook

Selecting data from the database
When selecting multiple records from the database the application must create a
cursor object to fetch the selected rows. Example 11-16 illustrates how to return
information using an Informix cursor.

Example 11-16 The ifx_cursor.rb output

C:\work>cat ifx_cursor.rb

load the informix driver
 require 'informix'
Connect to the database
 db = Informix.connect('stores_demo')
display database information
 print "Connected to #{db.version}\n"
Create a Cursor object
 cur = db.cursor(ARGV[0])
Open the cursor and fetch some rows
 cur.open.each {|rows|
 puts rows*" = "
 }.close
Close connection
 db.close
C:\work>ruby ifx_cursor.rb "SELECT FIRST 3 sname FROM state"
Connected to IBM Informix Dynamic Server Version 11.50.FC6
Alaska
Hawaii
California

C:\work>

Using the Ruby Informix IfxSlob class
The Slob class is the Ruby interface for handling smart large objects. It provides
methods for every action applicable with a smart large object. By using the
Informix::Slob class, it is possible to perform the same operations against a
smart large object as with other programming languages and drivers. The Slob
methods such as Seek() or Lock() allow random I/O to individuals part of the
large object that can only be achieved using this Ruby driver.
 Chapter 11. Working with Ruby on Rails 377

Example 11-17 shows how to select a BLOB from a database table. It retrieves
the catalog_advert CLOB column from the catalog table and prints out the
content of the large object and the size of the large object.

Example 11-17 The ifx_blob.rb output

C:\work>cat ifx_blob.rb
load the informix driver
 require 'informix'
Connect to the database
 db = Informix.connect("stores_demo")
Creates an Informix Slob object
 slob = Informix::Slob
Opens a cursor to retrieve
 cur = db.cursor("SELECT catalog_num,advert_descr FROM catalog WHERE
catalog_num=?")
 cur.open(ARGV[0]).each {|rows|
 slob = rows[1].open
 print "Number = #{rows[0]}\n"
Reads the blob data as a String
 print "Clob data= #{rows[1].read(rows[1].size)}\n"
 print "Clob Size= #{rows[1].size}\n"
Close the Slob object
 slob.close
 }
Close database connection
 db.close

C:\work>
C:\work>ruby ifx_blob.rb 10001
Number = 10001
Clob data= Brown leather. Specify first baseman's or infield/outfield style.
Clob Size= 98

C:\work>ruby ifx_blob.rb 10027
Number = 10027
Clob data=
Double or triple crankset with choice of chainrings or chunky bacon. For double
crankset...
Clob Size= 154

C:\work>ruby ifx_blob.rb 10031
Number = 10031
Clob data= No buckle so no plastic touches your chin. Meets both ANSI and
Snell...
Clob Size= 123

C:\work>
378 IBM Informix Developer’s Handbook

For examples and a full description of all the method implemented by the
Informix::Slob class, refer to:

http://ruby-informix.rubyforge.org/doc/classes/Informix/Slob.html

Using the Ruby Informix INTERVAL
The Ruby Informix driver provides a specific class to deal with the Informix
INTERVAL data type.

Example 11-18 shows how to define and use the Informix::Interval class. In
this example we create an Interval Year to Month with one year and one month
as the value. The code performs a simple arithmetic operation adding the Interval
to the current date.

Example 11-18 The ifx_interval.rb output

Creates an Informix Interval object
 minterval = Informix::Interval.year_to_month(1, 1)
 print "Interval \t=#{minterval}\n"
 today = Date.today
 print "Current date \t=#{today}\n"
 print"Interval+today\t=#{minterval + today}\n"

C:\work>ruby ifx_interval.rb
Interval =1-01
Current date =2010-07-04
Interval+today =2011-08-04

C:\work>

You can fine the full documentation about all the methods supported by the Ruby
Informix driver at:

http://ruby-informix.rubyforge.org/doc/

Using Data Server Ruby driver
In this section, we discuss the basic database operation using the Data Server
Ruby driver.

Connecting to the database
The syntax for opening a connection with an Informix database server using the
Data Server Ruby driver differs from the syntax used by the Ruby Informix driver.
 Chapter 11. Working with Ruby on Rails 379

http://ruby-informix.rubyforge.org/doc/classes/Informix/Slob.html
http://ruby-informix.rubyforge.org/doc/

Example 11-19 shows a simple Ruby script that creates a connection object and
opens the connection. In the example code we also retrieve information about
the Informix server using the IBM_DB::server_info class.

Example 11-19 The dsc_connect.rb script

C:\work>cat dsc_connect.rb

load the informix driver
 require 'mswin32/ibm_db'
Connect to the database
 db = IBM_DB.connect(ARGV[0],ARGV[1],ARGV[2])
 info = IBM_DB.server_info(db)
display database information
 print "Connected to #{info.DBMS_NAME} #{info.DBMS_VER}"

C:\work>ruby dsc_connect.rb testdsc informix password
Connected to IDS/NT64 11.50.0000
C:\work>

The Data Server Ruby driver is based on calls to the CLI driver, this means it
takes the connection details from the db2cli.ini configuration file.
Example 11-20 shows the contents of the db2cli.ini file that we used for this
test.

Example 11-20 The db2cli.ini file

C:\work>type "c:\Documents and Settings\Administrator\db2cli.ini"

[dsc_dsn]
Protocol=TCPIP
Port=9089
Hostname=kodiak
Database=stores_demo
PWD=password
UID=informix

C:\work>
380 IBM Informix Developer’s Handbook

Executing an SQL statement
Example 11-21 demonstrates how to execute an SQL statement using the
prepare() and execute() methods of the IBM_DB driver. Both methods,
prepare() and execute(), require the connection and statement objects as
parameters.

Example 11-21 The dsc_execute.rb output

C:\work>cat dsc_execute.rb

load the informix driver
 require 'mswin32/ibm_db'
Connect to the database
 db = IBM_DB.connect(ARGV[0],'','')
 info = IBM_DB.server_info(db)
display database information
 print "Connected to #{info.DBMS_NAME} #{info.DBMS_VER}\n"
create a prepare object with the SQL passed
 stmt = IBM_DB.prepare(db,ARGV[1])
Execute the prepared statement
 rc=IBM_DB.execute(stmt)
 print "Result=#{rc}"

C:\work>ruby dsc_execute.rb dsc_dsn "DELETE from STATE WHERE code='NW'"
Connected to IDS/NT64 11.50.0000
Result=true
C:\work>

Parametrized SQL statement
When using parameters for an SQL statement, the application can use the
execute() method. You can provide the parameters as a second argument for
the method call.

Example 11-22 insert a new record into the state table with the values passed to
the script through the command line.

Example 11-22 The dsc_param.rb output

C:\work>cat dsc_param.rb

load the informix driver
 require 'mswin32/ibm_db'
Connect to the database
 db = IBM_DB.connect('dsc_dsn','','')
 info = IBM_DB.server_info(db)
display database information
 print "Connected to #{info.DBMS_NAME} #{info.DBMS_VER}\n"
 sql = 'INSERT INTO state(code, sname) VALUES (?,?)'
 Chapter 11. Working with Ruby on Rails 381

create a prepare object
 stmt = IBM_DB.prepare(db,sql)
display Statement and parameters
 print "SQL=#{sql}\n"
Execute the prepared statement
 rc=IBM_DB.execute(stmt,[ARGV[0],ARGV[1]])
 print "Result=#{rc}"

C:\work>
C:\work>ruby dsc_param.rb "NW" "NewState"
Connected to IDS/NT64 11.50.0000
SQL=INSERT INTO state(code, sname) VALUES (?,?)
Result=true
C:\work>

Selecting data
The Data Server Ruby driver has several methods that allow retrieving data from
the database, such as fetch_array(), fetch_assoc(), and fetch_row().

Example 11-23 shows a simple Ruby script that returns the first two columns of
an SQL SELECT statement passed through the command line. The script uses
the fecth_array() method to retrieve the rows as an array object.

Example 11-23 Select data using fetch_array()

C:\work>cat dsc_fetch.rb

load the informix driver
 require 'mswin32/ibm_db'
Connect to the database
 db = IBM_DB.connect(ARGV[0],'','')
 info = IBM_DB.server_info(db)
display database information
 print "Connected to #{info.DBMS_NAME} #{info.DBMS_VER}\n"
create a prepare object with the SQL passed
 stmt = IBM_DB.prepare(db,ARGV[1])
Execute the prepared statement
 IBM_DB.execute(stmt)
 while row = IBM_DB.fetch_array(stmt)
 puts "#{row[0]}:#{row[1]}"
 end

C:\work>ruby dsc_fetch.rb dsc_dsn "SELECT FIRST 3 code,sname FROM state"
Connected to IDS/NT64 11.50.0000
AK:Alaska
HI:Hawaii
CA:California

C:\work>
382 IBM Informix Developer’s Handbook

Using smart large objects
The Data Server Ruby driver handles smart large objects as normal data types. It
does not support all the smart features that are normally available with other
drivers. However, it simplifies the code that is needed to deal with these data
types.

Example 11-24 retrieves a CLOB column from the catalog table and displays the
contents.

Example 11-24 The dsc_blob.rb file

C:\work>cat dsc_blob.rb

load the informix driver
 require 'mswin32/ibm_db'
Connect to the database
 db = IBM_DB.connect('dsc_dsn','','')
 info = IBM_DB.server_info(db)
display database information
 print "Connected to #{info.DBMS_NAME} #{info.DBMS_VER}\n"
create a prepare object with the SQL passed
 sql = "SELECT catalog_num,advert_descr FROM catalog WHERE catalog_num=?"
 stmt = IBM_DB.prepare(db,sql)
Execute the prepared statement
 IBM_DB.execute(stmt,ARGV)
 while row = IBM_DB.fetch_array(stmt)
 puts "#{row[0]}:#{row[1]}"
 end

C:\work>ruby dsc_blob.rb 10001
Connected to IDS/NT64 11.50.0000
10001:Brown leather. Specify first baseman's or infield/outfield style.
Specify right- or left-handed.

C:\work>

You can find additional documentation about the methods for the Ruby for IBM
Data Server at:

http://rubyibm.rubyforge.org/docs/driver/2.0.0/doc/

You can also find information in the IBM DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbcli
ent.ruby.doc/doc/c0052760.html
 Chapter 11. Working with Ruby on Rails 383

http://rubyibm.rubyforge.org/docs/driver/2.0.0/doc/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbclient.ruby.doc/doc/c0052760.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.dbclient.ruby.doc/doc/c0052760.html

11.4 Using the Rails Adapter with Ruby Informix

In this section, we demonstrate how to create a basic web application using the
Rails framework with the Ruby Informix Adapter.

One of the key concepts of Rails is Convention over Configuration, meaning that
you must follow the convention rules when designing your database so that the
Rails framework can generate code automatically to handle typical operations
with the database.

The following convention rules are required by the Rails framework:

� Table name must be a plural name for the entity it contains. For example, if
the table contains information about books, it should be called Books.

� The table must contains an unique primary key column and should be called
ID.

� You must create an Informix SQL SEQUENCE for each of the tables used for
both Ruby drivers. The name of the sequence must be tablename_seq.

You can find additional information about Rails conventions at:

http://guides.rubyonrails.org/

11.4.1 Creating database objects

The following examples use the orders and items tables from the stores7
database. Due to the convention rules used on Rails, we must modify the
schema of the tables to follow the Rails conventions.

Example 11-25 shows the SQL script we use to change the name of the two
tables, create views to incorporate the ID column, and create the SQL sequence
required for object reference.

Example 11-25 The setup.sql script

-- Orders table
RENAME TABLE orders TO order;
CREATE VIEW orders(
 id,
 order_date,
 customer_num,
 ship_instruct,
 backlog,
 po_num,
 ship_date,
 ship_weigh,
384 IBM Informix Developer’s Handbook

http://guides.rubyonrails.org/

 ship_charge,
 paid_date) AS
 SELECT * FROM order;

CREATE SEQUENCE orders_seq;

-- Items table
RENAME TABLE items TO item;
CREATE VIEW items (
 id,
 order_num,
 stock_num,
 manu_code,
 quantity,
 total_price) AS
 SELECT * FROM item;

CREATE SEQUENCE items_seq;

11.4.2 Creating the Rails application

You must create a Rails application using Rails commands before adding any
objects or definitions.

Example 11-26 shows the output of the rail stores command.

Example 11-26 Output of the rail stores command

C:\work>rails stores
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create components
 create db
 create doc
 create lib
 create lib/tasks
 create log
 create public/images
 create public/javascripts
 create public/stylesheets
...
 Chapter 11. Working with Ruby on Rails 385

For more information, refer to:

http://rubyonrails.org/documentation

11.4.3 Modifying the database configuration file

The database.yml file must include the connection details of the database.

Example 11-27 shows the database configuration file used by our application.

Example 11-27 The database.yml file

C:\work\stores>type config\database.yml
development:
 adapter: informix
 database: stores7
 pool: 5
 timeout: 5000
 server: demo_on
 username: informix
 password: password

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 database: stores7
 username: root
 password:
 host: localhost

production:
 adapter: informix
 database: stores7
 pool: 5
 timeout: 5000
 server: demo_on
 username: informix
 password: password

C:\work\stores>
386 IBM Informix Developer’s Handbook

http://rubyonrails.org/documentation

11.4.4 Creating the Rails model and controllers

To make Rails aware of the database tables, you create model and controller in
your application. We use the model and controller Ruby script to create model
and controller for the two tables used in our application.

Example 11-28 shows the batch script used to generate the model and controller
for the Items and Orders table.

Example 11-28 The objects.cmd script

ruby script\generate model Order
ruby script\generate controller Order
ruby script\generate model Item
ruby script\generate controller Item

Example 11-29 shows the output of each of the commands in the objects.cmd
batch script.

Example 11-29 Output of the objects.cmd script

C:\work\stores>ruby script\generate model Order
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/order.rb
 create test/unit/order_test.rb
 create test/fixtures/orders.yml
 exists db/migrate
 create db/migrate/004_create_orders.rb

C:\work\stores>ruby script\generate controller Order
 exists app/controllers/
 exists app/helpers/
 create app/views/order
 exists test/functional/
 create app/controllers/order_controller.rb
 create test/functional/order_controller_test.rb
 create app/helpers/order_helper.rb

C:\work\stores>ruby script\generate model Item
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/item.rb
 create test/unit/item_test.rb
 create test/fixtures/items.yml
 Chapter 11. Working with Ruby on Rails 387

 exists db/migrate
 create db/migrate/005_create_items.rb

C:\work\stores>ruby script\generate controller Item
 exists app/controllers/
 exists app/helpers/
 create app/views/item
 exists test/functional/
 create app/controllers/item_controller.rb
 create test/functional/item_controller_test.rb
 create app/helpers/item_helper.rb

C:\work\stores>

After the objects are created, you must modify the controller Ruby file for each
object to build the object scaffold. We use Rails 1.2.6 on our examples. Rails 2.x
does not support dynamic scaffolding. This means it cannot retrieve the
information for the table column dynamically. In this case, the scaffold for the
objects must be created manually while creating the model object. We add the
instruction scaffold: object_name to each of the files for creating scaffold.

Example 11-30 shows the Ruby script file for the Item and Order controllers.

Example 11-30 Controller script

C:\work\stores>cat app/controllers/order_controller.rb
class OrderController < ApplicationController
 scaffold :Order
end

C:\work\stores>cat app/controllers/item_controller.rb
class ItemController < ApplicationController
 scaffold :Item
end

C:\work\stores>

For more information about the changes in Rails 2.x, refer to:

http://rubyonrails.org/documentation
388 IBM Informix Developer’s Handbook

http://rubyonrails.org/documentation

11.4.5 Starting the Rails web server

To start the Rails web server use the ruby script/server command.

Example 11-31 demonstrates how to start the server.

Example 11-31 Rails web server

C:\work\stores>ruby script/server

=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2010-07-05 10:40:00] INFO WEBrick 1.3.1
[2010-07-05 10:40:00] INFO ruby 1.8.7 (2010-01-10) [i386-mingw32]
[2010-07-05 10:40:00] INFO WEBrick::HTTPServer#start: pid=1092 port=3000

11.4.6 Demonstrating website application

At this point, Rails should have constructed the application for you, and you can
browse and change the information for your table.

We can open a web browser and navigate to the local web server to browse the
the Order and Item tables:

http://127.0.0.1:3000/item
http://127.0.0.1:3000/order
 Chapter 11. Working with Ruby on Rails 389

Figure 11-1 shows the Listing items page. The page contains links to perform all
the typical operations that are associated with a database table (select, insert,
update, and delete).

Figure 11-1 Item listing web page

Figure 11-2 shows the New Item page with all the fields from the Item table ready
to be used to insert a new record into the table.

Figure 11-2 Item New web page
390 IBM Informix Developer’s Handbook

Figure 11-3 shows the Listing Orders page.

Figure 11-3 List Order webpage

The web applications development with Ruby on Rails was designed to be an
effortless task. With just four commands and a little configuration, we created a
website that can handle the common table operations for a database application.

11.5 Using the Rails Adapter with IBM_DB

In this section, we demonstrate how to create a basic web application using the
Rails framework with the IBM_DB Adapter. The sample program is a simple
telephone directory application for a user to list, add, update, and delete phone
entries.

Rails can be used to generate the Data Definition Language (DDL) for the
database objects. We show how to create tables with Ruby on Rails.
 Chapter 11. Working with Ruby on Rails 391

11.5.1 Creating the Rails application

Use the rails command to create the Rails application. We create our
application sample in the C:\RailsProjects directory.

Example 11-32 shows how to create a rails application and the rails command
output of our application.

Example 11-32 Creating a Rails application

C:\RailsProjects>rails sample
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create config/initializers
 ...

11.5.2 Modifying the database configuration file

Update the database.yml database configuration file with the database
connectivity details.

Example 11-33 shows the configuration file for our development database. The
name of the adapter, ibm_db, correspond to the Ruby Adapter for IBM Data
Servers.

Example 11-33 The database.yml file

development:
 adapter: ibm_db
 database: ruby
 username: informix
 password: Ifmx4you
 host: kefka.lenexa.ibm.com
 port: 9089

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:

production:
392 IBM Informix Developer’s Handbook

11.5.3 Creating model, control, and view

Ruby on Rails worked on a Model, Control, View architecture. You can create
model, control, and view components in stages. Here, we show a quick way of
using the scaffold command to have Rails create the complete application,
including all the directories and necessary files.

The telephone table of our application use strings for first name, last name, and
phone number. This table layout forms the model for our application. We specify
this model right on the scaffold command as shown in Example 11-34.

We invoke the command from the root directory of our project with the ruby
script\generate script. The syntax for the scaffold options is:

scaffold <model name> <column name: attributes> .. <column name: attributes>

The output shows that Rails creates the necessary models, views and
controllers. This command also generates the script to create the tables that are
necessary to associate with the model.

Example 11-34 Creating a scaffold

C:\RailsProjects\sample>ruby script\generate scaffold phonedir
first_name:string last_name:string phone:string
 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/phonedirs
 exists app/views/layouts/
 exists test/functional/
 exists test/unit/
 create test/unit/helpers/
 exists public/stylesheets/
 create app/views/phonedirs/index.html.erb
...
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/phonedir.rb
 create test/unit/phonedir_test.rb
 create test/fixtures/phonedirs.yml
 create db/migrate
 create db/migrate/20100704234009_create_phonedirs.rb
 Chapter 11. Working with Ruby on Rails 393

11.5.4 Migrating the model

Ruby on Rails calls the creation of the database objects backing the model as
migration. The scaffold command created a migrate script for creating the table
attached to the model.

Example 11-35 shows the db/migrate/20100704234009_create_phonedirs.rb
migration file that is created by the scaffold command. This script has both
create and drop sections, which means that you can roll back any migration. We
created a model by the name phonedir. Ruby on Rails then created the table
phonedirs, which is a plural form of the model name, which is the Ruby on Rails
naming convention.

Example 11-35 The phonedir migration file

class CreatePhonedirs < ActiveRecord::Migration
 def self.up
 create_table :phonedirs do |t|
 t.string :first_name
 t.string :last_name
 t.string :phone

 t.timestamps
 end
 end

 def self.down
 drop_table :phonedirs
 end
end

Use the rake utility to migrate the file and create table in the database. The rake
utility is a Ruby build script with capabilities similar to the make utility. You can use
the rake utility to generate the database schema using a migration file.

Example 11-36 shows how to run the rake script to create the model in the
database.

Example 11-36 Creating model

C:\RailsProjects\sample>rake db:migrate
(in C:/RailsProjects/sample)
== CreatePhonedirs: migrating ==
-- create_table(:phonedirs)
 -> 0.0781s
== CreatePhonedirs: migrated (0.0781s) =======================================
394 IBM Informix Developer’s Handbook

Example 11-37 uses the Informix dbschema utility to export the table schema to
check the tables created Ruby on Rails migration. We started with an empty
database and the output shows that two tables were created:

� schema_migrations

Ruby on Rails uses this table to keep track of the various version of the table,
which allows you to roll back to the previous version.

� phonedirs

In this application table, Ruby added a few columns that we did not specify:

– id: This serial column is for the primary key required by Ruby on Rails.
– created_at and updated_at: Ruby on Rails uses these optionally.

Example 11-37 The dbschema on database Ruby output

% dbschema -d ruby

DBSCHEMA Schema Utility INFORMIX-SQL Version 11.50.FC7
grant dba to "informix";
...
create table "informix".schema_migrations
 (
 version varchar(255) not null
);
...

create table "informix".phonedirs
 (
 id serial not null ,
 first_name varchar(255),
 last_name varchar(255),
 phone varchar(255),
 created_at datetime year to fraction(5),
 updated_at datetime year to fraction(5),
 primary key (id)
);
...
create unique index "informix".unique_schema_migrations on "informix"
 .schema_migrations (version) using btree ;
 Chapter 11. Working with Ruby on Rails 395

11.5.5 Starting the Rails web server

Example 11-38 shows how to start the Rails WEBrick server from the root
directory. The http port number is 3000.

Example 11-38 Starting the WEBrick server

C:\RailsProjects\sample>ruby script\server
=> Booting WEBrick
=> Rails 2.3.8 application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
[2010-07-04 17:25:22] INFO WEBrick 1.3.1
[2010-07-04 17:25:22] INFO ruby 1.9.1 (2010-01-10) [i386-mingw32]
[2010-07-04 17:25:22] INFO WEBrick::HTTPServer#start: pid=292 port=3000

11.5.6 Checking the application from website

You can start the web application using the local web server address:

http://localhost:3000/phonedirs

Figure 11-4 shows the initial screen that our application opened with
http://localhost:3000/phonedirs.

Figure 11-4 Initial screen of the application
396 IBM Informix Developer’s Handbook

We add one phone entry to our directory as shown in Figure 11-5.

Figure 11-5 Creating a new phone listing

Figure 11-6 shows that a phone entry is added.

Figure 11-6 Listing phonedir after the new entry

For more information regarding the development with Ruby and Ruby on Rails,
refer to:

http://rubyonrails.org/documentation
 Chapter 11. Working with Ruby on Rails 397

http://rubyonrails.org/documentation

398 IBM Informix Developer’s Handbook

Chapter 12. Informix 4GL Web Services

In this chapter, we introduce the new Web Services feature of IBM Informix 4GL.
This chapter provides an overview and configuring and building Web Services
using Informix 4GL.

In this chapter, we discuss the following topics:

� Basic concepts
� Setup and configuration
� Informix 4GL Web Services tools
� Developing a web service with I4GL
� Consuming a web service with I4GL
� Troubleshooting

12
© Copyright IBM Corp. 2010. All rights reserved. 399

12.1 Basic concepts

In this section, we provide an introduction of the products and technologies that
we discuss in this chapter.

12.1.1 IBM Informix 4GL

Informix 4GL is a programming language developed by IBM for interacting with
Informix database servers. It provides a rich environment for easy development
of relational database applications. Informix 4GL provides all the component
needed to develop character based applications using an Informix database, for
example, project management, reports, debugger, and so on.

Informix 4GL supports compilers that can convert the I4GL applications to C
language or to generate platform-independent pseudo code that can be executed
using a I4GL runner.

For more information about Informix 4GL, refer to the 4GL Reference Manual at:

http://publib.boulder.ibm.com/infocenter/ifxhelp/v0/index.jsp?topic=/com.ibm.to
ols.doc/4gl.html

12.1.2 Service-oriented architecture and Web Services

Service-oriented architecture (SOA) is an architectural style that provides
methods for systems development and integration, allowing applications
developed with different technologies or programing languages to exchange data
with one another.

This exchange of data is accomplished through the use of Web Services. Web
services are saleable functions that can be accessed independent of platforms
and programming languages. These functions take a set of inputs and return a
set of outputs to accomplish a specific task.

Refer to the Service Oriented Architecture — SOA portal for more information:

http://www.ibm.com/software/solutions/soa/

12.1.3 Web Services development

You can create a web service with any web-aware technology. Java is the most
common language that is used for Web Services development. However, you can
create Web Services with other language and technologies, such as C or .NET
400 IBM Informix Developer’s Handbook

http://www.ibm.com/software/solutions/soa/
http://publib.boulder.ibm.com/infocenter/ifxhelp/v0/index.jsp?topic=/com.ibm.tools.doc/4gl.html

IBM provides the following options for SOA development:

� IBM SOA Sandbox
� IBM Rational® Application Developer
� eKit: Enterprise Architect for SOA

You can develop a web service that requires the use of an IBM Informix database
using the following languages:

� Java, using any of the JDBC drivers for an Informix database
� Any .NET language, using any of the Informix .NET providers available
� IBM Informix 4GL

12.1.4 Informix 4GL and Web Services

Starting form version 7.50 of IBM Informix, 4GL developers can manage and
create Web Services using the 4GL language.

One of the key benefits of using Informix 4GL is the easy interaction with the
Informix database server. The use of SQL statements to access database
objects does not require any specific code as with other programming languages,
because SQL is embedded in the I4GL language.

The ability to create Web Services directly with I4GL allows the reuse of existing
code. Existing solutions that are developed with I4GL can be converted to web
solutions without much effort.

With Informix 4GL, you can publish existing I4GL functions as Web Services and
use existubg Web Services from any I4GL application.

12.1.5 Components

Informix 4GL uses the Axis2 web service wrapper API to implement the interface
that is required to communicate between the web server and the Informix 4GL
libraries.

A typical I4GL web service solution includes the following components:

� Apache AXIS2C server
� Web service
� Informix 4GL
� Informix Database Server
 Chapter 12. Informix 4GL Web Services 401

A web service can perform the following operations:

� Create is the process of creating the web service and publishing it to make it
available to consumers.

The term used in Informix 4GL for this task is Publish.

� Consume is the process of using the web service, providing input parameters,
and retrieving the result as output parameters for the function.

The term used in Informix 4GL for this task is Subscribe.

Axis2 C functions are used for both operations as the wrapper code between the
web service and Informix 4GL.

12.2 Setup and configuration

In this section, we discuss the setup and configuration needed to develop Web
Services with Informix 4GL.

12.2.1 Prerequisites and supported platforms

The following prerequisites are required to use Web Services with Informix 4GL:

� Apache Axis2/C version 1.5.1 (bundled with Informix 4GL)
� Apache Axis2/Java version 1.3.1 (bundled with Informix 4GL)
� IBM Informix database server version 10 or later
� Java Runtime Environment (JRE) 1.5 or later
� Perl 5.8.8

IBM Informix 4GL 7.50 is supported in the following platforms:

� HP-IA 11.23 and 11.31
� AIX 5.3 and 6.1
� Solaris 5.9 or 5.10
� Red Hat Enterprise Linux 4 and 5
� SUSE Linux Enterprise Server 10

Note: The Web Services feature was added to Informix 4GL version 7.50.xC1
but was available only for Linux platforms. Since version 7.50.xC3, all the
platforms listed previously are supported.
402 IBM Informix Developer’s Handbook

12.2.2 Environment

The utilities for using Web Services with Informix 4GL are installed in the same
directory as Informix 4GL.

We do not discuss how to install and set up Informix 4GL in this book. For more
information, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.4gl_install
.doc/fgl_ing_010.htm

To use any of the I4GL Web Services tools, you must set the variables listed in
Table 12-1 in the development environment. These variables define the location
of those 4GL, Java, and Axis2 resources that you need for application
development and deployment.

Table 12-1 Environment variables

Variable Description

AXIS2C_HOME Specifies the Axis2 installation directory

CLASSPATH Path to the required Java classes

DBPATH Path for support files. Must be $INFORMIXDIR/etc

INFORMIXDIR Directory where the 4GL files are installed

INFORMIXSERVER Default database server

INFORMIXSQLHOSTS Optional: Specifies the location of the sqlhosts
file, which contains database connectivity
information

JAVA_HOME Must be set to point to JRE 1.5 or later

Load Library Path
for example: LD_LIBRARY_PATH

Specifies which directories to search for client or
shared IBM Informix general libraries

PATH Specifies which directories to search for
executable programs. Must include the following
path:
$INFORMIXDIR/bin and $JAVA_HOME/bin

SOA_ERR_LOG Optional: Specifies the directory where the log file
(w4glerr.log) is created, defaults to /tmp

PROGRAM_DESIGN_DBS Optional: Database used for storing web service
definitions, defaults to syspgm4gl
 Chapter 12. Informix 4GL Web Services 403

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.4gl_install.doc/fgl_ing_010.htm

Example 12-1 shows a typical shell script to set up these variables.

Example 12-1 The setup.ksh script

AXIS2C_HOME=$INFORMIXDIR/AXIS2C
AXJDIR=$INFORMIXDIR/AXIS2C/AXIS2JARS
CLASSPATH=$AXJDIR/wsdl4j-1.6.2.jar:$AXJDIR/backport-util-concurrent-2.2.jar:$AX
JDIR/XmlSchema.jar:$AXJDIR/XmlSchema-1.3.1.jar:$AXJDIR/xbean-2.2.0.jar:$AXJDIR/
axiom-dom-1.3.1.jar:$AXJDIR/axiom-impl-1.3.1.jar:$AXJDIR/axiom-api-1.3.1.jar:$A
XJDIR/neethi-1.3.1.jar:$AXJDIR/axis.jar:$AXJDIR/commons-logging.jar:$AXJDIR/wsd
l2ws.jar:$AXJDIR/commons-discovery.jar:$AXJDIR/jaxrpc.jar:$AXJDIR/saaj.jar:$AXJ
DIR/wsdl4j.jar:$AXJDIR/axis2-java2wsdl-1.3.1.jar:$AXJDIR/axis2-codegen-1.3.1.ja
r:$AXJDIR/axis2-kernel-1.3.1.jar
DBPATH=$INFORMIXDIR/etc
LD_LIBRARY_PATH=$INFORMIXDIR/AXIS2C/lib:$LD_LIBRARY_PATH
export AXIS2C_HOME AXJDIR CLASSPATH DBPATH LD_LIBRARY_PATH

Some of the I4GL Web Services utilities, such as w4gl, keep design and
configuration information in a database on the Informix database server. The
default name for this database is syspgm4gl. The database is created the first
time the w4gl tool is invoked. You can specify your own database name using the
environment variable PROGRAM_DESIGN_DBS.

12.3 Informix 4GL Web Services tools

This section describes the tools that are available within Informix 4GL to publish,
deploy, package, and subscribe Web Services.

12.3.1 The w4glc Web Services compiler

The w4glc Web Services compiler is a script based on Perl. The w4glc compiler
performs all the required task to use Web Services within 4GL, from the creation
process to deploying and packaging.

The w4glc script is used by other I4GL utilities in a non-interactive way. Any error
or failure that is generated during the execution of the script is written to the
SOA_ERR_LOG log file.

To execute the w4glc utility, use the following syntax:

w4glc {-option} <configuration-file>

The w4glc utility does not keep any information in the database. It uses only
configuration files. The configuration file is a text file that specifies the details
about the I4GL function that is created as a web service. It contains information
404 IBM Informix Developer’s Handbook

such as the location of the 4GL source files, input and output parameters, and
database connectivity information.

Table 12-2 lists the parameters that are available with the w4glc utility.

Table 12-2 The w4glc utility parameter list

Example 12-2 shows the output for the generate option.

Example 12-2 The w4glc utility generate output

informix@irk:/work$ w4glc -generate ./ws_zipcode_irk.4cf
Begin environment check ...
Environment check is completed.
Generating code. Please wait ...
Generating Wrapper code
The wrapper file is /tmp/w4gl_informix/zipcode_details_wrap.c
Generating WSDL
Generating headers
Generating skeletal code
Code generation completed.
Removing /tmp/w4gl_informix/zipcode_details_wrap.c ...
Removing /tmp/w4gl_informix/zipcode_details.wsdl ...
Removing /tmp/w4gl_informix/axis2_skel_ws_zipcode.h ...
Removing /tmp/w4gl_informix/axis2_svc_skel_ws_zipcode.c ...
Removing /tmp/w4gl_informix/services.xml ...
Removing /tmp/w4gl_informix/axis2_skel_ws_zipcode.c ...
informix@irk:/work$

Option Description

check Reads the configuration file and performs basic checks, such
as ensuring that the identified source files exist

compile Compiles generated intermediate code

deploy Deploys the web service on the AXIS2C server

force Overwrites the existing service with identical name

generate Generates the intermediate code for publish/subscribe

help Provides basic help information

keep Retains intermediate source files for troubleshooting

package Bundles a web service for production deployment

silent Generates code without on-screen display

version Prints the version number
 Chapter 12. Informix 4GL Web Services 405

For additional information about the I4GL Web Services compiler, refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.4gl_admin.d
oc/fgl_wsg_500.htm

12.3.2 The w4gl utility

The character-based interface w4gl utility is the main tool when using Web
Services with Informix 4GL. It allows you to perform the same task as the
command line tool, w4glc, but it also manages the data within the program
design database, syspgm4gl.

The design database contains the following information about the Web Services
environment:

� Information for the host system, such as the host name or temporary
directories

� Location for the Axis2 web server

� Details for the Informix servers to which the Web Services connects

� Definition for Web Services, such as function names or parameters types

The web service definition that is specified through the utility is saved in
database tables and is available for future reuse and modification, thus reducing
development effort.

The w4gl utility uses the same I4GL character-based interface as other 4GL tools
to accomplish the creation and consumption of Web Services.

Example 12-3 shows the main menu of the w4gl utility.

Example 12-3 The w4gl utility main menu

+--+
|W4GL: Publish Subscribe Host name App server Exit |
|Create and Deploy web services from I4GL functions. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
406 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.4gl_admin.doc/fgl_wsg_500.htm

| |
| |
| |
| |
| |
| |
+--+

The w4gl utility offers the following options:

� Use the Publish option to create a new web service.

� Use the Subscribe option to consume a web service.

� Use the Host name option to managed the host information that is stored in
the design database.

� Use the Application server option to managed the Axis2 information that is
stored in the design database.

For a detailed description of all the w4gl utility menu options, refer to the 4GL
Web Services Administration Guide, which is available at:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
4gl_admin.doc/fgl_wsg_006.htm

12.3.3 Web Services Description Language Parser (wsdl_parser)

Web Services Description Language (WSDL) is an XML-based language for
describing network services. You can use WSDL to describe all the functions and
parameters for a web service.

When you subscribe a web service, the wsdl_parser tool parses the WSDL file to
retrieve all the information that is required to define a web service.

The syntax to invoke the wsdl_parser tool is:

wsdl_parser sid wsdl_path ws_func i4gl_func target_dir target_file

Table 12-3 describes each parameter. All of the parameters are required for the
tool to work correctly.

Table 12-3 The wsdl_parser tool parameters list

Parameter Description

sid An integer that uniquely identifies the subscriber

wsdl_path Location of the file that describes the complete description of the
web service; can be an online or a local copy of the WSDL file
 Chapter 12. Informix 4GL Web Services 407

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.4gl_admin.doc/fgl_wsg_006.htm

Example 12-4 shows the wsdl_parser tool used to generate the configuration file
for a ws_zipcode web service. This example passes the WSDL definition directly
from a web server as the following wsdl_path parameter:

http://irk:9876/axis/services/ws_zipcode?wsdl

Example 12-4 The wsdl_parser tool output

informix@irk:/work$ wsdl_parser 0 http://irk:9876/axis/services/ws_zipcode?wsdl
zipcode_details zipcode4gl `pwd`/publish zipcode4gl.c
informix@irk:/work$ ls publish
local.wsdl zipcode4gl.c_zipcode4gl.4cf
informix@irk:/work$

ws_func Function to consume within the designated web service

i4gl_func Name for the wrapper function to be used by the I4GL program

target_dir The path where files are stored while the web service is being
consumed

target_file The file name that contains the generated subscriber client code

Note: The sid parameter is used only when you invoke the wsdl_parser from
the w4gl tool. This parameter is ignored if you use wsdl_parser from the
command line.

Parameter Description
408 IBM Informix Developer’s Handbook

12.3.4 I4GL Web Services process

Figure 12-1 illustrates how the I4GL Web Services tools work together.

Figure 12-1 I4GL Web Services tools

12.4 Developing a web service with I4GL

In this section, we demonstrate the steps that are required to create a web
service using IBM Informix 4GL. Publish and subscribe are two operations to
perform with a web service:

� Publish

The tasks required to create a new web service with the w4gl utility are:

a. Add the Host name and an Axis2 server information.

b. Add the web service definition details.

c. Generate the web service configuration file for publishing.

d. Deploy a web service by registering the service in the Axis2 web server.

e. Package a web service as a single file (a .tar file) that is ready for the
production server.

� Subscribe

The tasks needed to consume a web service are with the w4gl tool are:

a. Add details for the web service to consume.

b. Compile the Web Services wrapper code that generates the configuration
file for subscription.
 Chapter 12. Informix 4GL Web Services 409

In the remaining sections, we describe how to publish a simple I4GL function as
a web service and show that the function can be used from other languages such
as Java.

12.4.1 Example I4GL function

We use a basic I4GL function, state_name(), for the web service. This function
connects to the database server and retrieves the name for a specific state code.

Example 12-5 shows the 4GL code state_name() saved in the state_name.4gl
file. This function queries the state table from the stores_demo database. The
state_name() function takes one input parameter state code of type CHAR(2)
and returns the state name that has CHAR(15) data type.

Example 12-5 The state_name.4gl file

FUNCTION state_name(code)
 DEFINE state_rec RECORD
 code CHAR(2),
 sname CHAR(15)
 END RECORD,
 code CHAR(2),
 sel_stmt CHAR(100);

 LET sel_stmt= "SELECT code, sname FROM state WHERE code = ?";

 PREPARE st_id FROM sel_stmt;
 DECLARE cur_id CURSOR FOR st_id;

 OPEN cur_id USING code;
 FETCH cur_id INTO state_rec.*;
 CLOSE cur_id;
 FREE cur_id;
 FREE st_id;
 RETURN state_rec.sname
END FUNCTION

To ensure that the 4GL code is correct, we compile the function with the I4GL
compiler, c4gl, as shown in Example 12-6.

Example 12-6 Compile 4GL function

informix@irk:/work$ c4gl -c state_name.4gl
informix@irk:/work$
410 IBM Informix Developer’s Handbook

12.4.2 Host and application details

Before adding any of the details for the web service, we must provide details
about the system where the web service will run and the Axis2 server that is
used. To complete these tasks, we use the “Host name” and “Application server”
menus from the w4gl utility.

Example 12-7 shows the HOST INFORMATION form with the host name irk and
the /tmp/w4gl_informix temporary directory.

Example 12-7 Host name menu

+--+
|HOST NAME: Query Next Previous Add Modify Remove Exit |
|See the existing host name details. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| HOST INFORMATION |
| |
| Machine ID [1] |
| Host Name [irk] |
| Temporary Directory [/tmp/w4gl_informix] |
| [] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--+

Host information includes the following fields:

� Machine ID is an automatic identifier number.

� Host Name is the system name where the Axis2 server is installed.

� Temporary Directory is the directory that is used by the w4glc utility for
creating temporary files.

After you define the host information, add the information for the Axis2
application server using the APP SERVER menu.
 Chapter 12. Informix 4GL Web Services 411

Example 12-8 shows the APP SERVER form.

Example 12-8 Application menu

+--+
|APP SERVER: Query Next Previous Add Modify Remove Exit |
|Go to the next app server |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| APP SERVER INFORMATION |
| Server ID [1] |
| Server Name [axis] |
| Host Name [irk] |
| Port Number [9876] |
| ENVIRONMENT VARIABLES |
| INFORMIXDIR [/usr3/4gl750] |
| INFORMIXSQLHOSTS [/usr3/sqlhosts] |
| CLIENT_LOCALE [en_us.utf8] |
| DBDATE [Y4MD-] |
| Notes [] |
| [] |
| [] |
| [] |
| |
| |
| |
+--+

An application server is identified by the following fields:

� Server ID is an automatic identifier number.
� Server Name is the name of the Axis2 server.
� Host Name is the system name where the Axis2 server runs.
� Port Number is the port used for incoming connections to the web service.

The APP SERVER option is also used to stored specific environment information
for the application server. This information is required because the Axis2 server
binary loads the I4GL libraries that might need additional resource files located in
the $INFORMIXDIR directory.

12.4.3 Definition of the web service

In this section, we demonstrate how to define a web service from the w4gl utility.
To define a web service:

1. Add the IBM Informix database that the web service will use.

2. Add the definition for the web service, such as the name of the service or the
name of the 4GL function.
412 IBM Informix Developer’s Handbook

3. Add specific details for the web service such as input and output variables.

4. Add the location of the 4GL source code file.

Add Informix database details
You add Informix database details using the Database menu from the w4gl utility.

Example 12-9 shows the DATABASE INFORMATION form with details of the
database that we used in our example.

Example 12-9 Database option

+--+
|DATABASE: Query Next Previous Add Modify Remove Exit |
|Go to the previous database record. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| DATABASE INFORMATION |
| |
| Database ID [1] |
| Database Name [stores7] |
| Database Server [irk1150] |
| IDS Version [11.50] |
| DB_LOCALE [en_US.819] |
| Notes [] |
| [] |
| [] |
| [] |
| |
| |
| |
| |
| |
| |
+--+

This menu option uses the following fields:

� Database ID is an automatic number that identifies a database definition.
� Database name defines the database name to which the web server connects.
� IDS Version is the Informix database server version number.
� DB_LOCALE is the locale of the database. The default DB_LOCALE is en_US.819.
 Chapter 12. Informix 4GL Web Services 413

Add details about the web service
You can add details about the web service using the Add option in the web
service menu. Example 12-10 shows this option.

Example 12-10 Add the web service menu

+--+
|WEB SERVICE: Query Next Previous Add Modify Remove Install ... |
|Specify a new service record. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| |
| |

First, you add the web service name and the function name using the Detail
menu option. Example 12-11 shows this input form with the details of our web
service.

Example 12-11 Web service details

+--+
|ADD: Detail Variable File Exit |
|Specify the web service parameters. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| Webservice ID [4] |
| Webservice Name [ws_statename] |
| Function Name [state_name] |
| Notes [Returns the state name for a given code] |
| [] |
| [] |
| [] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--+

The following input details on this form describes a web service:

� Webservice ID is an automatically generated identifier for the web service.
� Webservice Name is the name of the web service.
� Function Name is the he name of the 4GL function.
414 IBM Informix Developer’s Handbook

Input and output variables
Next, you add the input and output variables that the web service uses with the
Variable menu option. Example 12-12 shows this menu option. Our function
takes an CHAR(2) input parameter and returns a CHAR(15) value.

Example 12-12 Web service VARIABLE option

+--+
|VARIABLE: Input Output Exit |
|Exit the Variable menu. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| [1] Input parameter - Variable name Data type |
| |
| [1][code][CHAR(2)] |
| [][][] |
| [][][] |
| [][][] |
| [][][] |
| |
| [1] Output parameter - Variable name Data type |
| |
| [1][sname][CHAR(15)] |
| [][][] |
| [][][] |
| [][][] |
| [][][] |
| |
| |
+--+
 Chapter 12. Informix 4GL Web Services 415

Source file information
Finally, you define a web service. We stored the location of the I4GL source file
that contains our function using the File menu option. Example 12-13 shows the
fields used by the File option.

Example 12-13 Web service File option

+--+
|ADD: Detail Variable File Exit |
|Exit the web services Add menu. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| Service Name [ws_state_name] |
| Function Name [state_name] |
| |
| File Number [1] |
| Directory [/work] |
| File Name [state_name.4gl] |
| |
| File Number [] |
| Directory [] |
| File Name [] |
| |
| File Number [] |
| Directory [] |
| File Name [] |
| |
| |
| |
+--+

An I4GL function can require more than one I4Gl file. You must supply all the
required file names and their directories. We supplied the 4GL file
state_name.4gl that contains the state_name() function.

12.4.4 Generate the configuration file

With the details of the web service stored in the design database, you can then
generate the configuration file (.4cf) for a Publish operation. The Generate
option is inside the Install menu option.
416 IBM Informix Developer’s Handbook

Example 12-14 shows the Generate form. You must complete every field in the
form. If you stored the definition for these items in the design database, you can
retrieve them using the Ctrl+B key shortcut.

Example 12-14 Generate form

+--+
|INSTALL: Generate Deploy Package Exit |
|Generate the configuration file for a web service. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| +---+ |
	DATABASES: Query Previous query Exit	
Service ID [4] M	Make a new selection	

Service Name [ws_s	DATABASE INFORMATION	
Host Name [irk		
Temp Directory [/tmp	ID Database Name	
[[1] [stores7]	
App-Server Name [axis	[] []	
Port Number [98	[] []	
Database Name [[] []	
Database Server [[] []	
	[] []	
	Arrow key - Press Esc to Accept or press Ctrl+C to Ca	
+---+		
+--+

After you enter all the information, use the Generate option to create the
configuration file. Example 12-15 shows the output of the Generate option.

Example 12-15 Generate option

+--+
|INSTALL: Generate Deploy Package Exit |
|Generate the configuration file for a web service. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| GENERATE CONFIGURATION |
| |
| Service ID [4] Machine ID [1] Server ID [1] Database ID [1] |
| |
| Service Name [ws_state_name] |
| Host Name [irk] |
| Temp Directory [/tmp/w4gl_informix] |
| [] |
| App-Server Name [axis] |
| Port Number [9876] |
| Database Name [stores7] |
| Database Server [irk1150] |
| |
| Generated configuration file ws_state_name_irk.4cf |
+--+
 Chapter 12. Informix 4GL Web Services 417

The Generate operation creates the configuration file that is required for
publishing a web service. The name of the file is constructed using the web
service name, the host name, and a .4cf extension. In our example, the name of
the file is ws_state_name_irk.4cf.

Example 12-16 shows the configuration file for the ws_state_name web service.

Example 12-16 The ws_state_name_irk.4cf file

[SERVICE]
 TYPE = publisher
 INFORMIXDIR = /usr3/4gl750uc3
 DATABASE = stores7
 CLIENT_LOCALE = en_us.utf8
 DB_LOCALE = en_US.819
 INFORMIXSERVER = irk1150
 HOSTNAME = irk
 PORTNO = 9876
 I4GLVERSION = 7.50.xC3
 WSHOME = /usr3/4gl750uc3/AXIS2C
 WSVERSION = axis
 TMPDIR = /tmp/w4gl_informix
 SERVICENAME = ws_state_name
 [FUNCTION]
 NAME = state_name
 [INPUT]
 [VARIABLE] NAME = code TYPE = CHAR(2) [END-VARIABLE]
 [END-INPUT]
 [OUTPUT]
 [VARIABLE] NAME = sname TYPE = CHAR(15) [END-VARIABLE]
 [END-OUTPUT]
 [END-FUNCTION]
 [DIRECTORY]
 NAME = /work
 FILE = state_name.4gl,
 [END-DIRECTORY]
[END-SERVICE]

You can use a configuration file (4cf) with the w4glc utility to perform tasks, such
as generate and compile, directly from the command line. Example 12-17 shows
how to perform all the steps that the w4gl deploy options performs using the
w4glc utility.

Example 12-17 Using w4glc

informix@irk:/work$ w4glc -generate -compile -deploy ws_state_name_irk.4cf
Begin environment check ...
Environment check is completed.
Generating code. Please wait ...
418 IBM Informix Developer’s Handbook

Generating Wrapper code
The wrapper file is /tmp/w4gl_informix/state_name_wrap.c
Generating WSDL
Generating headers
Generating skeletal code
Code generation completed.
Generating shared object for service ws_state_name
Compiling code. Please wait...
Executing: c4gl --shared -o /tmp/w4gl_informix/libws_state_name.so
-I/usr3/4gl750/AXIS2C/include/axis2-1.5.0 -L/usr3/4gl750/AXIS2C/lib
-laxis2_engine -laxutil -laxis2_axiom /tmp/w4gl_informix/state_name_wrap.c
/tmp/w4gl_informix/axis2_skel_ws_state_name.c
/tmp/w4gl_informix/axis2_svc_skel_ws_state_name.c /work/state_name.4gl
/usr3/4gl750/lib/tools/w4glutil.a /usr3/4gl750/lib/tools/lib4gl.a
Compilation done.
Deploying service ws_state_name ...
Deploying the service. Please wait ...
Copying /tmp/w4gl_informix/libws_state_name.so ...
Copying /tmp/w4gl_informix/services.xml ...
Copying /tmp/w4gl_informix/state_name.wsdl ...
Service name: ws_state_name
The wrapper file is /tmp/w4gl_informix/state_name_wrap.c
Generating WSDL
Generating headers
Generating skeletal code
Code generation completed.
Generating shared object for service ws_state_name
Compiling code. Please wait...
Executing: c4gl --shared -o /tmp/w4gl_informix/libws_state_name.so
-I/usr3/4gl750/AXIS2C/include/axis2-1.5.0 -L/usr3/4gl750/AXIS2C/lib
-laxis2_engine -laxutil -laxis2_axiom /tmp/w4gl_informix/state_name_wrap.c
/tmp/w4gl_informix/axis2_skel_ws_state_name.c
/tmp/w4gl_informix/axis2_svc_skel_ws_state_name.c /work/state_name.4gl
/usr3/4gl750/lib/tools/w4glutil.a /usr3/4gl750/lib/tools/lib4gl.a
Compilation done.
Deploying service ws_state_name ...
Deploying the service. Please wait ...
Copying /tmp/w4gl_informix/libws_state_name.so ...
Copying /tmp/w4gl_informix/services.xml ...
Copying /tmp/w4gl_informix/state_name.wsdl ...
Service name: ws_state_name
Deployed at : /usr3/4gl750/AXIS2C/services/ws_state_name

Removing /tmp/w4gl_informix/state_name_wrap.c ...
Removing /tmp/w4gl_informix/state_name.wsdl ...
Removing /tmp/w4gl_informix/axis2_skel_ws_state_name.h ...
Removing /tmp/w4gl_informix/axis2_svc_skel_ws_state_name.c ...
Removing /tmp/w4gl_informix/services.xml ...
Removing /tmp/w4gl_informix/axis2_skel_ws_state_name.c ...
Removing /tmp/w4gl_informix/libws_state_name.so ...

The output of the command line tool shows all the steps completed while creating
and compiling the wrapper function. When errors occur during the deployment
 Chapter 12. Informix 4GL Web Services 419

process, running each individual step with the w4glc utility might help to diagnose
the reason for the problem.

12.4.5 Deployment of the web service

This process generates the auxiliary code that is required to link the Axis2
application server with the I4GL function. During deployment, the C code for the
web service is created and compiled automatically using the 4GL libraries. The
result of this process is a shared library ready that can be used in the application
server.

This process also creates a WSDL file for the web service and copies this file,
together with the web service shared library, into the application server directory.

The Deploy option is part of the Install menu. Example 12-18 shows the
deployment of the ws_state_name web service.

Example 12-18 Deploy form

+--+
|INSTALL: Generate Deploy Package Exit |
|Deploy the web service. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| CONFIGURATION TO DEPLOY |
| |
| File Name [ws_state_name_irk.4cf] |
| [] |
| [] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Deployed ws_state_name. |
+--+
420 IBM Informix Developer’s Handbook

After a successful deployment, the web service is ready to be consume by any
application. The files are copied into the Axis2 services directory automatically.

Example 12-19 shows the web service files on the application server.

Example 12-19 Application Server services directory

informix@irk:/work$ ls $INFORMIXDIR/AX*/services/ws_state_name
libws_state_name.so services.xml state_name.wsdl
informix@irk:/work$

12.4.6 Packaging of the web service

Packaging a web service is the process of creating a compressed file with all the
components that are required by the web service. You can use the compressed
file, in .tar format, on other Axis2 servers. Example 12-20 shows the Package
menu option.

Example 12-20 Package option

+--+
|INSTALL: Generate Deploy Package Exit |
|Package the web service. |
|[1 of 1]------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| SERVICE PACKAGING |
| |
| File Name [ws_state_name_irk.4cf] |
| [] |
| [] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Packaging successful. Check $TMPDIR directory (in config file) for .tar file |
+--+
 Chapter 12. Informix 4GL Web Services 421

The compressed file is left in the $TMPDIR directory. Example 12-21 shows the
contents of the packaged file for the ws_state_name web service.

Example 12-21 Packaged .tar file

informix@irk:/work$ tar tvf /tmp/w4gl_informix/ws_state_name.tar
drwxr-xr-x informix/informix 2010-07-05 21:01 ws_state_name/
-rw-r--r-- informix/informix 2010-07-05 21:01 ws_state_name/services.xml
-rw-r--r-- informix/informix 2010-07-05 21:01 ws_state_name/state_name.wsdl
-rwxr-xr-x informix/informix 2010-07-05 21:01 ws_state_name/libws_state_name.so
informix@irk:/work$

12.4.7 Starting the Axis2 application server

An Axis2 application server is included with the Informix 4GL package. It is
located in the AXIS2C directory under the $INFORMIXDIR directory.

The Axis2 application server must be started to consume a web service. It is not
required during the development or deploy process.

Example 12-22 demonstrates how to start the Axis2 application server.

Example 12-22 Starting Axis2

informix@irk:/usr3/4gl750/AXIS2C/bin$./axis2_http_server -p 9876
Started Simple Axis2 HTTP Server ...

For more information about the Axis2 application server, refer to:

http://ws.apache.org/axis2/c/docs/axis2c_manual.html

12.4.8 Consuming the I4GL web service

The main feature of a web service is that it can be used by any application in any
platform. A web service is not tied to the technology or programming language
that is used to develop the service. Any application that supports SOAP can
make use of the functions that are implemented inside a web service. SOAP is a
simple XML-based protocol that is used to exchange information over an HTTP
link.

In this section, we demonstrate how to use the ws_state_name web service using
a basic Java application.
422 IBM Informix Developer’s Handbook

http://ws.apache.org/axis2/c/docs/axis2c_manual.html

Getting a list of available Web Services
You can get a list of available Web Services in the Axis2 application server by
opening a web browser and connecting to the Axis2 server:

http://hostname:port/axis/services

Figure 12-2 shows the Web Services that are available in our example.

Figure 12-2 Axis2 Web Services

You can use the ?wsdl keyword to retrieve the WSDL file as follows:

http://hostname:port/axis/services/ws_state_name?wsdl
 Chapter 12. Informix 4GL Web Services 423

Figure 12-3 shows the WSDL information for the ws_state_name service.

Figure 12-3 WSDL information for the ws_state_name service

Java application
The main advantages of Web Services is that the application that uses the
services does not need to know anything about how the service is implemented.
The information needed for consuming a web service is defined in the WSDL file,
such as the name of the operations that it supports and the parameters that it
requires.

Example 12-23 demonstrates how to use the ws_state_name I4GL web service
from a simple Java application.

Example 12-23 The state_name.java file

informix@irk:/work$ cat state_name.java
 import org.apache.axis.client.Call;
 import org.apache.axis.client.Service;
 import javax.xml.namespace.QName;

 public class state_name {
 public static void main(String [] args) {

 try {
 String endpoint = "http://irk:9876/axis/services/ws_state_name";
 String qname = "http://www.ibm.com/ws_state_name";

 Service service = new Service();
 Call call = (Call) service.createCall();
424 IBM Informix Developer’s Handbook

 call.setTargetEndpointAddress(new java.net.URL(endpoint));
 call.setOperationName(new QName(qname, "state_name"));
 String ret = (String) call.invoke(new Object[] { args[0] });

 System.out.println("Sent 'CA', got '" + ret + "'");
 } catch (Exception e) {
 System.err.println(e.toString());
 }
 }
 }

informix@irk:/work$ javac state_name.java
informix@irk:/work$ java state_name CA
Sent 'CA', got 'California '
informix@irk:/work$ java state_name AR
Sent 'CA', got 'Arkansas '
informix@irk:/work$

12.5 Consuming a web service with I4GL

In this section, we demonstrate how to consume a web service using IBM
Informix 4GL.

12.5.1 Web service to consume

You can use the w4gl utility to insert details about the specific web service that
you want to consume. The Subscribe menu option allows you to manage
definitions for Web Services in the design database.

Example 12-24 shows the Subscribe form with the details referring to the
ws_state_name web service.

Example 12-24 Subscribe form

+--+
|SUBSCRIBE: Query Next Previous Add Modify Remove Compile Exit |
|Specify a new web service definition. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| Subscription ID [3] |
| WSDL Path [http://irk:9876/axis/services/ws_state_name?wsdl] |
| [] |
| Webservice Function[state_name] |
| I4GL Function [statename] |
 Chapter 12. Informix 4GL Web Services 425

| Target Directory [/work/publish] |
| Target File Name [statename] |
| Notes [Wrapper for ws_state_name Web Service] |
| [] |
| [] |
| |
| |
| |
| |
| |
| |
| |
+--+

This form includes the following details:

� Subscription ID is an automatic generated identifier of the web service.

� WSDL Path is the complete path of the WSDL file for the service. This path can
be a local file or a URL.

� Web service Function is the function name that is provided by the web
service.

� I4GL Function is the name of the wrapper C function. This name is the
function that our I4GL used to invoke the web service operation.

� Target Directory is the directory where the wrapper and configuration files
are created.

� Target File Name is the name of the C source file with the I4GL function.

The configuration file for a publish operation is generated automatically by the
w4gl utility, but you can also create it using the wsdl_parser as shown in
Example 12-25.

Example 12-25 Generating the configuration file

informix@irk:/work$ wsdl_parser 0
http://irk:9876/axis/services/ws_state_name?wsdl state_name wsstatecode
`pwd`/publish statecode.c
informix@irk:/work$ ls publish
local.wsdl statecode.c_wsstatecode.4cf
informix@irk:/work$ cat publish/statecode.c_wsstatecode.4cf
[SERVICE]
 TYPE = subscriber
 I4GLVERSION = 7.50.xC4
 WSHOME = 0
 TARGET_DIR = /work/publish
 I4GL_FUNCTION = wsstatecode
 TARGET_FILE = statecode.c
 [WSDL_INFO]
426 IBM Informix Developer’s Handbook

 WSDL_PATH = /work/publish/local.wsdl
 WSDL_NAME_SPACE = http://www.ibm.com/state_name
 [FUNCTION]
 SERVICENAME = ws_state_name
 NAME = state_name
 [INPUT]
 [VARIABLE] NAME = code TYPE = char(2) [END-VARIABLE]
 [END-INPUT]
 [OUTPUT]
 [VARIABLE] NAME = sname TYPE = char(15) [END-VARIABLE]
 [END-OUTPUT]
 [END-FUNCTION]
 [END-WSDL_INFO]
[END-SERVICE]

12.5.2 Compiling the wrapper code

Next, you need to generate and compile the wrapper code using the Compile
menu option of the w4gl utility. Example 12-26 shows the w4gl utility after the
wrapper code is compiled for the ws_state_name web service.

Example 12-26 Compile option

+--+
|SUBSCRIBE: Query Next Previous Add Modify Remove Compile Exit |
|Compile the subscriber client code. |
|--------------------------------[irkpgm4gl]-------------------[Help: CTRL-W]|
| |
| Subscription ID [3] |
| WSDL Path [http://irk:9876/axis/services/ws_state_name?wsdl] |
| [] |
| Webservice Function[state_name] |
| I4GL Function [statename] |
| Target Directory [/work/publish] |
| Target File Name [statename] |
| Notes [Wrapper for ws_state_name Web Service] |
| +---+|
| | ||
| |Subscriber code has been compiled successfully. ||
| +---+|
| |
| |
| |
| |
| |
+--+
 Chapter 12. Informix 4GL Web Services 427

After this process is complete, the C files for the wrapper function, including the
object file that contains the function code, are left in the Target Directory that is
specified in the web service definition.

Example 12-27 shows the files for the ws_state_name web service. You can use
these files from an Informix 4GL program to consume the web service.

Example 12-27 Web service files

informix@irk:/work/publish$ ls
axis2_stub_ws_state_name_statename.h statename.c_statename.4cf
statename.c statename.o
informix@irk:/work/publish$

12.5.3 Using the web service from an I4GL application

To consume a web service from I4GL, you have to link the object file for the
wrapper function in the 4GL code or use the C source file that is generated
during the subscribe compile process.

Example 12-28 shows a simple 4GL program that uses the wrapper function for
the ws_state_name web service. The wrapper function can be called like any
other C function in I4GL.

Example 12-28 The I4GL subscriber code: wsstate.4gl

informix@irk:/work/publish$ cat wsstate.4gl
MAIN
 DEFINE sname CHAR(15)
 WHENEVER ERROR STOP

 CALL statename("CA") RETURNING sname
 DISPLAY "State name: ",sname

END MAIN
informix@irk:/work/publish$ c4gl wsstate.4gl statename.c -o wsstate
$INFORMIXDIR/lib/tools/w4glutil.a -I$AXIS2C_HOME/include/axis2-1.5.0
-L$AXIS2C_HOME/lib -laxis2_engine
informix@irk:/work/publish$./wsstate
State name: California
informix@irk:/work/publish$

For more information about Informix 4GL, refer to the 4GL Reference Manual at:

http://publib.boulder.ibm.com/infocenter/ifxhelp/v0/index.jsp?topic=/com.ibm.to
ols.doc/4gl.html
428 IBM Informix Developer’s Handbook

http://publib.boulder.ibm.com/infocenter/ifxhelp/v0/index.jsp?topic=/com.ibm.tools.doc/4gl.html
http://publib.boulder.ibm.com/infocenter/ifxhelp/v0/index.jsp?topic=/com.ibm.tools.doc/4gl.html

12.6 Troubleshooting

In this section, we discuss typical problems that can occur when developing a
web service using the Informix 4GL Web Services tools and how to obtain
diagnostic information through the use of tracing or log files.

12.6.1 Typical problems

This section lists typical problems that can occur.

Connection
Connection errors normally occur when there is something wrong in the
configuration details for the development environment or the web service.

Any web service developed in I4GL requires the use of the Informix 4GL
communication libraries for the database connection. I4GL tools such as w4gl
keep details about the environment in the Design database. Therefore, it is
critical that the communication with the IBM Informix database was configured
correctly before beginning any project.

Environment variables such as INFORMIXDIR and INFORMIXSQLHOSTS must
contain valid details for the Informix database server to use during development.

Also, consider the following problems that are related to connection:

� Confirm Informix database server details. Informix Web Services tools and
Web Services running on the Axis2 server use the database information that
is defined in the Design database.

� Verify connection information. Connection information regarding the Axis2
server, such as the host name or port number, is stored as part of an
Application Server definition. Check that these values are valid.

� Consuming Web Services with a 4GL application requires a TCP connection
from the I4GL program to the application server that is running the web
service. Make sure that the location of the web service is correct and that the
application server can be reached from the I4GL process.

Compilation errors
A common reason for having compilation errors is due to an incorrect setup or
incorrect use of the Informix 4GL Web Services utilities.

Environment variables such as PATH and LD_LIBRARY_PATH (or the suitable
variable for the platform) might cause compilation and runtime errors when
developing a web service with Informix 4GL. When a compile problem occurs
 Chapter 12. Informix 4GL Web Services 429

while using one of the I4GL web service tools, the information about the error is
written into the W4GL log file. The default name and location of this file is
/tmp/w4glerr.log.

Example 12-29 shows an error message that is generated by the w4gl utility
during the deploy process.

Example 12-29 A w4gl error.

The file "state_name.err" has been written.
-CDCAK0012: The web service not deployed. Check error log '/tmp/w4glerr.log'

The Deploy menu option performs several operations automatically, including
generating the wrapper code, compiling, and moving the Web Services files into
the Axis2 server. To know the specific task that is failing, use the web compiler
utility (w4glc) to perform each individual task manually.

By default, the w4glc script deletes the temporary files that are used to perform a
task. Use the -keep flag to avoid file deletion.

Example 12-30 shows how to run the generate process using the w4glc utility.

Example 12-30 Using w4glc generate to avoid file deletion

informix@irk:/work$ w4glc -generate -keep ws_state_name_irk.4cf
Begin environment check ...
Environment check is completed.
Generating code. Please wait ...
Generating Wrapper code
The wrapper file is /tmp/w4gl_informix/state_name_wrap.c
Generating WSDL
Generating headers
Generating skeletal code
Code generation completed.

With the wrapper files in the temporary directory, you can execute the compile
process from the command line using the w4glc utility and examine the output for
any errors. Example 12-31 shows the output of the compile process when an
compilation error occurs.

Example 12-31 Compilation output

informix@irk:/work$ w4glc -compile -keep ws_state_name_irk.4cf
Begin environment check ...
Environment check is completed.
Generating shared object for service ws_state_name ...
Compiling code. Please wait...
430 IBM Informix Developer’s Handbook

Executing: c4gl -keep --shared -o /tmp/w4gl_informix/libws_state_name.so
-I/usr3/4gl750/AXIS2C/include/axis2-1.5.0 -L/usr3/4gl750/AXIS2C/lib
-laxis2_engine -laxutil -laxis2_axiom...
The compilation was not successful. Errors found: 1.
The file "state_name.err" has been written.
Error executing: c4gl -keep --shared -o /tmp/w4gl_informix/libws_state_name.so
-I/usr3/4gl750/AXIS2C/include/axis2-1.5.0 ...
/usr3/4gl750/lib/tools/w4glutil.a /usr3/4gl750/lib/tools/lib4gl.a at
/usr3/4gl750/lib/globals.pm line 583.
Error executing: c4gl -keep --shared -o /tmp/w4gl_informix/libws_state_name.so
-I/usr3/4gl750/AXIS2C/include/axis2-1.5.0 -L/usr3/4gl750/AXIS2C/lib
-laxis2_engine -laxutil ...
informix@irk:/work$

Similar to any I4GL program, if the error was inside the Informix 4GL code, a .err
file is created that contains the error message. Example 12-32 shows the content
of the state_name.err file.

Example 12-32 The state_name.err file

informix@irk:/work$ cat state_name.err
FUNCTION state_name(code)
 DEFINE state_rec RECORD
 code CHAR(2),
 sname CHAR(15)
 END RECORD,
 code CHAR(2),
 sel_stmt CHAR(100);

 LET sel_stmt= "SELECT code, sname FROM state WHERE code = ?";

 PEPARE st_id FROM sel_stmt;
|________^
|
| A grammatical error has been found on line 11, character 10.
| The construct is not understandable in its context.
| See error number -4373.
 DECLARE cur_id CURSOR FOR st_id;

 OPEN cur_id USING code;
 FETCH cur_id INTO state_rec.*;
...
 Chapter 12. Informix 4GL Web Services 431

Keeping the wrapper C files in the temporary directory might be useful when the
compilation error appears inside the Axis2 functions. Example 12-33 shows the
temporary files that are created with the generate option for the ws_state_name
web service.

Example 12-33 Temporary files

informix@irk:/work$ ls /tmp/w4gl_informix/
axis2_skel_ws_state_name.c services.xml tmpXMLReqFile
axis2_skel_ws_state_name.h state_name_wrap.c ws_state_name.tar
axis2_svc_skel_ws_state_name.c state_name.wsdl
informix@irk:/work$

While compiling any web service, during creation or consume, make sure all the
required libraries and include files are passed to the compiler correctly. These
requirements can vary from platform to platform. Always check the release notes.

The release and documentation files for Informix 4GL are located in the
release/en_us/0333 directory inside the INFORMIXDIR variable. These files
contain additional information that is relevant to the version of I4GL that is
installed, such as known issues or compiler requirements, that might help
diagnose the problem.

Consuming the web service
Errors when consuming the web service might be caused by an invalid web
service definition. Items such as the function name or parameters type are
defined in the configuration file and are used to create the WSDL file that the
application server uses to define the web service. You can retrieve the WSDL
information for a web service using the location of the service and the ?wsdl
suffix from any web browser.
432 IBM Informix Developer’s Handbook

Figure 12-4 shows the WSDL information for the ws_state_name web service.

Figure 12-4 WSDL for ws_state_name service

Make sure the operations, parameters, and data types are correct for the I4GL
code that the function uses.

Testing a web service
Informix I4GL does not provide any specific tool for testing Web Services.
Although you can create a simple 4GL code to consume the web service,
depending on the complexity of the web service, it can be more useful to perform
a complete testing.

You can use open source tools, such as soapUI, to test your web service before
publish it in the production environment. For more information about soapUI,
refer to:

http://www.soapui.org/
 Chapter 12. Informix 4GL Web Services 433

http://www.soapui.org/

12.6.2 Tracing

A developer can use one of the following types of tracing when diagnosing an
Informix 4GL web service problem:

� Application server trace can be used to diagnose problems between a client
application and the Axis2 application server.

� Database trace can be used when diagnostic problems are specific to
operations with the database server, such as SQL errors or incorrect data
returned.

Application server trace
The Axis2c application server provides a method to trace all the exchanged
messages between the application server and a client that is consuming a web
service.

You can set this trace using the -l log_level option when you start the Axis2
server. To launch the Axis2 server with trace enable, run the following command:

axis2_http_server -p 9876 -l 6 -f /tmp/w4gl_informix/axis_trace.log

Use the -l to specify the logging level for the application server. The maximum
value is 6, which enables full tracing.

You can specify the location of the trace file using the -f log_file option.
Example 12-34 shows the contents of a typical trace file.

Example 12-34 A typical application_trace sample

[debug] phase_resolver.c(139) Service name is : ws_zipcode
[debug] phase_resolver.c(1123) Operation name is : zipcode_details
[debug] phase_holder.c(139) Add handler AddressingOutHandler to phase
[debug] phase_holder.c(139) Add handler AddressingOutHandler to phase
[debug] phase_resolver.c(222) svc name is:ws_state_name
[debug] phase_resolver.c(139) Service name is : ws_state_name
[debug] phase_resolver.c(1123) Operation name is : state_name
[debug] phase_holder.c(139) Add handler AddressingOutHandler to phase
...

For more information about the logging options with the Axis2c application
server, refer to:

http://ws.apache.org/axis2/c/docs/axis2c_manual.html#simple_axis_server
434 IBM Informix Developer’s Handbook

http://ws.apache.org/axis2/c/docs/axis2c_manual.html#simple_axis_server

Database trace
IBM Informix 4GL uses the SQLI protocol to exchange data with the Informix
server. Thus, any web service that is developed using Informix 4GL also uses the
SQLI protocol for any communication with the database server.

You can use the SQLIDEBUG environment variable to collect all the messages
between the application server and the Informix database server.

To enable this trace, create the SQLIDEBUG environment variable before
starting the Axis2 Application server.

Example 12-35 demonstrates how to set the SQLIDEBUG variable and how to
run sqliprint to un-encode the SQLI file.

Example 12-35 The SQLIDEBUG variable client side

informix@irk:/usr3/4gl750/AXIS2C/bin$ export SQLIDEBUG=2:/tmp/sqlitrace
informix@irk:/usr3/4gl750/AXIS2C/bin$./axis2_http_server -p 9876
Started Simple Axis2 HTTP Server ...

...

...
informix@irk:/work$ ls /tmp/sqlitrace*
/tmp/sqlitrace_17008_0_8c819d0

informix@irk:/works$ sqliprint -o tracefile.txt /tmp/sqlitrace_17008_0_8c819d0

informix@irk:/works$

You can also use the SQLIDEBUG trace at the server side. For more information,
refer to 3.3.6, “Troubleshooting” on page 117.

Note: The sqliprint tool is included with Informix Client Software
Development Kit (Client SDK).
 Chapter 12. Informix 4GL Web Services 435

436 IBM Informix Developer’s Handbook

Chapter 13. Application development
considerations

In this chapter, we examine some of the considerations a developer might need
to address in a multi-user environment. A single user workstation that connects
to an exclusive-use database does not the issue of two or more independent
uses of the same data at the same time. However, in a multi-user environment,
concurrency is a challenge.

IBM Informix database servers are designed to provide features to help in
handling concurrency and sorting facilities. The application developer should
design applications to take advantage of these built-in features, rather than
attempt to implement their own facilities in the application. In this chapter we
examine the factors that cause concurrency problems, and focus on ways to
keep the scope and duration of locks to a minimum. To do this, we consider
isolation levels, sharing data, and data contention issues that can occur when
two or more attempts are made to access or change the same row of data.

In the last two sections, we focus on configuration parameters that effect the
application development, and how to monitor issues when the application
developers work with the database administrator to tune the engine and the
application to work effectively.

13
© Copyright IBM Corp. 2010. All rights reserved. 437

13.1 Concurrency and locking

Concurrency involves two or more independent uses of the same data at the
same time. In a database system with many users, each user needs to be able to
access and modify data. Unless the developer and database system impose
controls, there can be negative consequences. Programs might access old data
that is in the process of being changed by another user, and changes might
seem to disappear even though it seems like the change was performed
successfully.

To take advantage of database server controls, tables in a multiple user
environment should be logging tables. At a minimum, if you must use a
nonlogging table within a transaction, either set Repeatable Read isolation level
or lock the table in exclusive mode.

To avoid concurrency problems, the database server imposes a system of locks.
A lock is a claim, or reservation, that a program can place on a piece of data. The
database server assures that no other program can modify it, as long as the lock
is in place. When another application requests the data, the database server
either makes the program wait or turns it back with an error.

The application developer can control the effect of lock access using a
combination of SQL statements and with the buffering mode selected for the
database. The most used SQL statements are SET LOCK MODE, SET
ISOLATION, and SET TRANSACTION. We discuss these in more detail later.
For now, we need a better understanding of the types of locks that we can
encounter.

IBM Informix offers several server edition. IBM Informix Extended Parallel Server,
Informix Online, and Standard Engine will have different syntax for concurrency
related commands. You can find more information about the command syntax for
the discussion in this chapter in IBM Informix Guide to SQL: Syntax, v11.50,
SC27-3611.

13.1.1 Types of locks

A lock is implemented as a variable associated with a data item. It can be
explicitly placed by an application or, more frequently, is implicitly handled by the
database management system. The lock is used to mark a data item as
reserved; the type of lock designation determines what actions are permitted by
users in regard to the data item.
438 IBM Informix Developer’s Handbook

An IBM Informix instance can have several types of locks:

� A shared lock reserves its object for reading only. It prevents the object from
changing while the lock remains. More than one program can place a shared
lock on the same object. More than one object can read the record while it is
locked in shared mode. In the lock list output visible from onstat -k, a thread
with a shared lock is be designated with an S. If an object is currently locked in
exclusive mode and the user thread wants to acquire a shared lock, the
designation is “IS” (intent-shared).

When a session first connects to a database, IBM Informix Servers place a
shared lock on the database, to prevent another session from acquiring an
exclusive lock on the same database. SELECT queries place a shared lock at
the table level, because it is faster for the engine to find a table level lock than
it is to search through potentially thousands of row locks.

� Intent-exclusive locks are set automatically by Informix. If a row in a table is
updated, an exclusive lock is placed on the row and an intent-exclusive lock is
placed on the table. This assures that no other session can place a shared or
exclusive lock on the table as long as an individual row is locked exclusively.
In the lock list output visible from onstat -k, a thread with an intent exclusive
lock is designated with an IX. A related designation that is sometimes visible
is SIX. This designation indicates the object is currently shared, with
Intent-exclusive when the chance arrives.

� An exclusive lock reserves its object for the use of a single application. This
lock type is used when the application needs to change the object. You
cannot place an exclusive lock where any other kind of lock exists. After you
place an exclusive lock, you cannot place another lock on the same object. In
the lock list output visible from onstat -k, a thread with an exclusive lock is
designated with an X.

� A promotable (or update) lock establishes an intent to update. You can only
place it where no other updatable or exclusive lock exists. You can place an
updatable lock on records that already have shared locks. When the
application is about to change the locked object, you can promote the update
lock to an exclusive lock, but only if no other locks, including shared locks, are
on the record at the time the lock would change from update to exclusive. If a
shared lock was on the record when the update lock was set, you must drop
the shared lock before the update lock can be promoted to an exclusive lock.
In the lock list output visible from onstat -k, a thread with an update lock is
designated with an U.
 Chapter 13. Application development considerations 439

13.1.2 Lock duration

The length of time a lock remains in effect is known as lock duration. The
duration of a lock is determined by the application, the closing of a database, and
the type of transaction method used by the application and database

If the database does not use transactions (no transaction log exists and you do
not use a COMMIT WORK statement), an explicit table lock remains until it is
removed by the execution of the UNLOCK TABLE statement.

If database transactions are in use, the end-of-lock-duration event occurs when
the transaction ends or a COMMIT WORK is issued in the application. The
ending transaction causes a release of all table, row, page, and index locks that
were on hand during the transaction.

13.1.3 Lock granularity

With IBM Informix Servers, the developer can apply locks to databases, tables,
disk pages, data rows, or index-key values. At a database level, an exclusive lock
is simple to enforce for a developer, but it has a big impact on users. No one gets
access until the database lock processing is completed. Concurrency drops to
zero, and performance is maximized for the exclusive use of a single user
running an application.

At the other end of the granularity scope for locks, a transaction can exclusively
lock a row, and have no impact on other users in their work efforts (if they are not
trying to access the same row, and the lock mode is row). Concurrency is
maximized, but performance will tend to slide as the number of users for a
database or table increases.

Table locks
It is the responsibility of both database administrator and developer to select and
enable the best level of lock granularity for users and for their database system.
At the database level, administrative activities such as imports and exports are
usually the task of the database administrator. For such activity, the database
administrator would use a command such as

DATABASE database_name EXCLUSIVE;

Another task, principally for the database administrator, is to enable a change for
a table or an index structure. The task of enabling work on an entire table can be
done with a command similar to one of the following command:

� LOCK TABLE table_name IN EXCLUSIVE MODE;
� LOCK TABLE table_name in SHARE MODE;
440 IBM Informix Developer’s Handbook

When the task is finished (end of statement or transaction reached), the table is
implicitly unlocked. It could be unlocked explicitly with the following command:

UNLOCK TABLE table_name;

Page locks
Lock mode PAGE is the default for Informix tables, and it is considered the
optimal level in lock efficiency when rows are being accessed and modified in
physical order. If your tables are large in row count and small in row size, a page
level lock can be severely limiting, because it will lock a large number of rows on
a page, and discourage user access.

In this case, it would be more efficient to change the default lock mode. For all
new tables, this can be done by way of the Informix onconfig file, using the
parameter DEF_TABLE_LOCKMODE. For example:

DEF_TABLE_LOCKMODE ROW;

Row and key locks
Row and key locks generally provide the best overall performance when you are
updating a relatively small number of rows, because they increase concurrency.
However, the database server incurs some overhead in obtaining a lock. For an
operation that changes a large number of rows, obtaining one lock per row might
not be cost effective. For operations that consistently change a large number of
rows, page locks might be a better option.

Note: A table lock on a table can decrease update concurrency radically. Only
one update transaction can access that table at any given time, and that
update transaction locks out all other transactions. However, multiple
read-only transactions can simultaneously access the table. This behavior is
useful in a data warehouse environment where the data is loaded and then
queried by multiple users.

Note: Use a small (or default) page size if your application contains small
sized rows. Increasing the page size for an application that randomly
accesses small rows can decrease performance. In addition, a page lock on a
larger page will lock more rows, which is likely to reduce concurrency in some
situations.

Tables that use page locks cannot support the USELASTCOMMITTED
concurrency feature.
 Chapter 13. Application development considerations 441

If a table is not created with row locking and you want row or key locks, you must
alter the table. Here is an example to show how to create a table with row locking
turned on:

CREATE TABLE table_namer(field1 serial,field2 char(20)...)
LOCK MODE ROW;

The ALTER TABLE statement can also change the lock mode. An example for
this command syntax is:

ALTER TABLE table_name LOCK MODE (ROW);

When the lock mode is ROW and you insert or update a row, the database server
creates a row lock. In some cases, you place a row lock by simply reading the
row with a SELECT statement.

When the lock mode is ROW and you insert, update, or delete a key (performed
automatically when you insert, update, or delete a row), the database server also
creates a lock on the key in the index.

Key-value locks
When a user deletes a row within a transaction, the row cannot be locked
because it becomes a non-existent row. However, the database server must
somehow record that a row existed until the end of the transaction. The database
server uses key-value locking to lock the deleted row. Key locks are used
identically to row locks. When the table uses row locking, key locks are
implemented as locks on imaginary rows.

When the table uses page locking, a key lock is placed on the entire index page
that contains the key or that would contain the key if it existed. A page lock on an
index page can decrease concurrency more substantially than a page lock on a
data page. Index pages are dense and hold a large number of keys. By locking
an index page, you make a potentially large number of keys unavailable to other
users until you release the lock.

Database locks
The act of opening a database places a shared lock on the database name. The
statements which open a database are CONNECT, DATABASE, or CREATE
DATABASE. As long as a database is open, the shared lock on the database

Note: To determine the current lock mode for a table:

� On UNIX, try “oncheck -pt dbname:tablename | grep Locking”
� On Windows systems, examine the output of “oncheck -pt

dbname:tablename”
442 IBM Informix Developer’s Handbook

prevents any other program from dropping the database or putting an exclusive
lock on it.

Locking a database for exclusive use are not needed very often, because this
would prevent other users and programs from accessing it for the duration of the
lock. The usual reason for a database lock would be the need for a major
structure change across several tables, when implementing a series of related
indexes on several tables, or when you have an application that needs
uninterrupted access to the database for a period of time. To lock a database in
exclusive mode, the syntax is:

DATABASE database_name EXCLUSIVE;

Tasks that run from the sysadmin database (dbscheduler tasks, such as Auto
Update Statistics), occasionally might prevent exclusive database access. In this
case, you must temporarily disable the dbscheduler. In the sysadmin database,
stop the scheduler API with:

execute function task(scheduler shutdown)

Restart the scheduler API with:

execute function task(scheduler start)

Smart large object locks
Smart large objects are quite different in the way they work from the rest of the
structures and processes in IBM Informix databases. The locking and locking
granularity for smart large objects is also different. The database server uses one
of the following granularity levels for locking smart large objects:

� The sbspace chunk header partition
� The smart large object
� A byte range of the smart large object

The default locking granularity for a smart BLOB is at the level of the smart large
object. When you update a smart large object, the database server locks the
smart large object that is being updated. Concurrently, there is an update lock
placed on the sbspace chunk header partition while the object is being updated.

Byte locks
Byte locks, also known as byte-range locks, are used to lock a specific byte range
of a smart large object. Byte-range locking is advantageous because it allows
multiple users to update the same smart large object simultaneously, as long as
they are updating different parts of it. Also, users can read a part of a smart large
object while another user is updating or reading a different part of the same
smart large object.
 Chapter 13. Application development considerations 443

How the database server manages byte-range locks
The database server manages byte-range locks in the lock table in a similar
fashion to other locks placed on rows, pages, and tables. However, the lock table
must store the byte range as well. If a user places additional locks on a byte
range, any new byte locks in the range that are contiguous are consolidated into
one lock range.

Likewise, if a user unlocks a portion of the bytes included within a byte-range
lock, the database server will split into multiple byte-range locks.

To enable use of byte-range locks
By default, the database server places a lock on the entire smart large object. At
the time of sbspace creation, there is an option to use byte-range locking.

When the DBA sets the default locking mode for the sbspace to byte-range
locking, the database server locks only the necessary bytes when it updates any
smart large objects stored in the sbspace. To set byte-range locking for the
sbspace that stores the smart large object, the database administrator must use
the onspaces utility.

The following example sets byte-range locking for a new sbspace:

onspaces -c -S sblob -g 2 -p /ifmx/sblob1 -o 0 -s 1000 -Df LOCK_MODE=RANGE

When byte-range locking is set for the individual smart large object, the database
server implicitly locks only the necessary bytes when it selects or updates the
smart large object. The application developer can set byte-range locking for the
smart large object when it is opened, using one of the following methods:

� Set the MI_LO_LOCKRANGE flag in the mi_lo_open() DataBlade API function.
� Set the LO_LOCKRANGE flag in the ifx_lo_open() ESQL/C function.

To lock a byte range explicitly, use one of the following functions:

� mi_lo_lock()
� ifx_lo_lock()

These functions lock the range of bytes that is specified for the smart large
object. If the developer specifies an exclusive lock with either function, UPDATE
statements do not place locks on the smart large object if they update the locked
bytes.

The database server releases exclusive byte-range locks placed with
mi_lo_lock() or ifx_lo_lock() at the end of the transaction. The database
server releases shared byte-range locks placed with mi_lo_lock() or
ifx_lo_lock() based on the same rules as locks placed with SELECT
444 IBM Informix Developer’s Handbook

statements, depending upon the isolation level. The application can also release
shared byte-range locks with mi_lo_unlock() or ifx_lo_unlock().

For more information about these DataBlade API functions, see IBM Informix:
DataBlade API Programmer's Guide:

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.d
apip.doc/dapip.htm

You can fine additional details about the ESQL/C functions in the IBM Informix:
ESQL/C Programmer's Manual at:

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.e
sqlc.doc/esqlc.htm

13.2 Locking issues and performance

Row and key locks generally provide the best performance whenever a database
system only needs to update a small number of rows at a time. However, the
database incurs additional overhead in obtaining a lock as the granularity gets
smaller. The developer should help decide the granularity based on the character
of the trnasactions.The following are guidelines for your decision making:

� For low row count transactions, use row level locking.

� For large processes that update an entire table, set locking to page or lock the
table in exclusive mode before processing.

� For massive updates to many tables or the whole database, lock the database
in exclusive mode before processing.

The type of isolation can affect overall performance because it affects
concurrency. Before you execute a SELECT statement, you can set the isolation
level with one of these options:

� The SET ISOLATION statement (an extension to ANSI SQL-92 standard)

– Can be executed more than once in a transaction.
– Can change the enduring isolation level for a session
– Has an additional isolation level (Cursor Stability)

� SET TRANSACTION (ANSI/ISO-compliant)

– Can only be executed once in a transaction.

� Dirty Read isolation (or ANSI Read Uncommitted) level does not place any
locks on any rows fetched during a SELECT statement. Dirty Read isolation is
appropriate for static tables that are used for queries. Use Dirty Read isolation
with care if update activity occurs at the same time. With Dirty Read, the
 Chapter 13. Application development considerations 445

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.dapip.doc/dapip.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.esqlc.doc/esqlc.htm

reader can read a row that has not been committed to the database and might
be eliminated or changed during a rollback.

13.2.1 Deadlocks

A deadlock is a situation in which a pair of programs blocks the progress of each
other. Each program has a lock on some object that the other program wants to
access. In a database with local database queries only, a deadlock arises only
when all programs concerned set their lock modes to wait for locks.

An Informix database server detects deadlocks immediately when they only
involve data at a single network server. Before a lock is granted, the database
server examines the lock list for each user. If a user holds a lock on the resource
that the requestor wants to lock, the database server traverses the lock wait list
for the user to see if the user is waiting for any locks that the requestor holds. If
so, the requestor receives a deadlock error. It prevents the deadlock from
occurring by returning an error code (error -143 ISAM error: deadlock detected)
to the second program to request a lock. The error code is the one the program
receives if it sets its lock mode to not wait for locks. If your program receives an
error code related to locks even after it sets lock mode to wait, you know the
cause is an impending deadlock.

The best way to avoid deadlocks is to set lock mode to wait for a specific number
of seconds (N), where N is the number of seconds it is reasonable for your
applications to wait on a lock. Example syntax:

SET LOCK MODE TO WAIT 30;

Deadlock errors can be unavoidable when applications update the same rows
frequently. However, certain applications might always be in contention with each
other. Examine applications that are producing a large number of deadlocks and
try to run them at different times. To monitor the number of deadlocks, monitor
the deadlks field in the output of onstat -p.

Distributed transactions
Deadlock handling is more challenging when you are using a distributed query,
which involves more than one database server. In this case, the server cannot
monitor the locks of the other database, so deadlocks cannot be detected before
they occur.

Occasionally, there might be a need for each database to wait on a lock from
another local transaction. When the wait occurs, the entire distributed transaction
might need to wait until the action is cleared up. If both servers get into a
wait-for-the-other-server to complete mode, you have a multi-server deadlock
that neither server can get out of easily.
446 IBM Informix Developer’s Handbook

To avoid this situation, set the DEADLOCK_TIMEOUT parameter in the onconfig
file. This parameter tells the server how much time to wait before returning an
error code (error -143 ISAM error: deadlock detected). For more information
about using this configuration parameter, see IBM Informix Dynamic Server
Administrator's Guide, v11.50, SC27-3606.

Distributed transactions, also known as global transactions, can have additional
problems beyond concurrency and locking. In a distributed transaction, we can
have queries that include multiple, separate databases spanning multiple host
systems across a network. With the added task of reaching out to different
servers, we are confronted with delays caused by network traffic, connectivity
issues, additional user authentication, and user activity on the other database
server that can slow or temporarily prevent quick access to the remote database
server.

In the context of a query that is doing an update, insert, select, or delete, this new
group of interfering factors can occasionally present problems. Developers
should include coding conventions to accommodate distributed (XA) transactions
and include code to avoid certain problems. We have included an ESQL/C
routine (xa_tool.ec) in Appendix B, “Accommodating distributed transactions” on
page 469 that is designed to help provide a start for handling XA problems.

13.3 Isolation levels

The number and duration of locks placed on data during a SELECT statement
depends on the level of isolation that the user sets. The type of isolation can
affect overall performance because it affects concurrency.

You can set the isolation level with the SET ISOLATION or the ANSI SET
TRANSACTION statement before you execute the SELECT statement. The main
differences between the two statements are that SET ISOLATION has an
additional isolation level, Cursor Stability, and SET TRANSACTION cannot be
executed more than once in a transaction as SET ISOLATION can.

Dirty Read isolation
Dirty Read isolation (or ANSI Read Uncommitted) does not place any locks on
any rows fetched during a SELECT statement. Dirty Read isolation is appropriate
for static tables that are used for queries. It offers the best performance of all
isolation levels, because the database server does not check or place any locks
for queries.

If update activity can occur at the same time as a dirty read, there is a chance
that a rollback might need to occur during the dirty read. The reader could read a
 Chapter 13. Application development considerations 447

row that has not been committed (this is known as a phantom read) to the
database and the data would be lost during a subsequent rollback. Because of
potential problems with uncommitted data that is rolled back, use Dirty Read
isolation with care.

Databases that do not have logging turned on (and thus do not allow
transactions) use Dirty Read as a default isolation level. In fact, Dirty Read is the
only isolation level allowed for databases that do not have logging turned on.

Committed Read isolation
Committed Read isolation (or ANSI Read Committed) removes the problem of
phantom reads. A reader with this isolation level checks for locks before it returns
a row. By checking for locks, the reader cannot return any uncommitted rows.

The database server does not actually place any locks for rows read during
Committed Read. It simply checks for any existing rows in the internal lock table.

Committed Read is the default isolation level for databases with logging, and it is
an appropriate isolation level for most activities.

Cursor Stability isolation
A reader with Cursor Stability isolation acquires a shared lock on the row that is
currently fetched. This action assures that no other user can update the row until
the user fetches a new row.

If you do not use a cursor to fetch data, Cursor Stability isolation behaves in the
same way as Committed Read. No locks are actually placed.

Repeatable Read isolation
Repeatable Read isolation (also known as ANSI Serializable and ANSI
Repeatable Read) is the strictest isolation level. With Repeatable Read, the
database server locks all rows examined (not just fetched) for the duration of the
transaction.

Repeatable Read is useful during any processing in which multiple rows are
examined, but nothing will change during the transaction. The original application
holds a read lock on each account that it examines until the end of the
transaction, so the attempt by the second application to change the first account
fails (or waits, depending upon SET LOCK MODE).

Note: With Repeatable Read, because even examined rows are locked, if the
database server reads the table sequentially, a large number of rows
unrelated to the query result can be locked.
448 IBM Informix Developer’s Handbook

Use Repeatable Read isolation for tables when the database server can use an
index to access a table. If an index exists and the optimizer chooses a sequential
scan instead, you can use directives to force use of the index. However, forcing a
change in the query path might negatively affect query performance.

13.4 Configuration options

We have brought configuration parameters into our discussion several times. In
this section, we examine IBM Informix Server configuration options that directly
affect application development. We point out what the developers should know,
and how these parameters affect the application and transactions. For more
information about any of the parameters in the onconfig file or environment
variables relating to configuration, see IBM Informix Dynamic Server
Administrator's Reference, v11.50, SC27-3607.

13.4.1 Server identification

When the Informix server needs to resolve a database instance name, the
oninit process uses the contents of a file known as the sqlhosts file. Each line
in the sqlhosts file provides a database server naming reference, called the
DBSERVERNAME, along with a protocol, a host system reference, and a
listening protocol service reference. On Windows systems, this information is
stored in the registry and is updated and accessed using the setnet32.exe utility.
Multiple DBSERVERNAME references allow for an evenly distributed connection
distribution over a variety of protocols

In addition to the information in the sqlhosts file, the DBSERVERNAME crosses
reference to the onconfig file, which holds the configuration information
describing how the database server is to operate. When a client application
connects to a database server, it specifies a DBSERVERNAME, which helps the
server to know which protocol will be used for the connectivity.

The DBSERVERNAME used in the application connection must be consistent
with a name specified in the sqlhosts file and a DBSERVERNAME that is
defined in the onconfig file.

In the onconfig file, there is a default (main instance) DBSERVERNAME and one
or more alternate DBSERVERNAME parameters that are available. The DBA
specifies the default name to be used with the DBSERVERNAME parameter in
the onconfig file. For alternative application processing, the DBA can allow for or
specify alternative protocols, referenced by an a different DBSERVERNAME.
The alternate DBSERVERNAME or names are specified by the
DBSERVERALIASES parameter in the onconfig file. An application developer
 Chapter 13. Application development considerations 449

should check with the DBA to determine whether to use the DBSERVERNAME
or one of the DBSERVERALIASES for connecting with his application. Example
SQL statements include CONNECT, DATABASE, CREATE TABLE, and ALTER
TABLE, which can specify the database server instance.

13.4.2 Storage space identifiers

When tables are created, the database creator has syntax options available to
define where tables and indexes are to be placed physically in a disk structure.
Typically, the database administrator defines the disk structure layout. The disk
layout is assigned by way of dbspaces, and each dbspace is further broken down
into allocations of chunks.

The dbspace is the parent structure unit, used to hold storage information for
tables and indexes, with low level definitions to describe where the actual data
pointers for row data resides, as well as information about indexes, fragments,
and table scope. The dbspace area that tracks pointer locations for data is known
as the table space.

When defining the table and index schema, the database administrator can
specify a dbspace location to hold the table or the index. Other space
specifications for default storage are available if none are specified at creation
time. These default locations define where to store binary large objects (BLOBs),
character large objects (CLOBs), and temporary storage locations.

The default location for the location of temp tables and sorting space, if not
predefined, is the dbspace where a table is accessed, or the root dbspace
(rootdbs). If a default onconfig file definition for the location of temp dbspace is
defined, we have more control over the location used

The DBSPACETEMP parameter
The DBSPACETEMP parameter specifies a list of dbspaces that the database
server uses to globally manage the storage of temporary tables. When a
temporary space is available, it improves performance by enabling the database
server to spread I/O for temporary tables across multiple disks efficiently. The
database server also uses temporary dbspaces during backups to store the
before-images of data that are overwritten while the backup is occurring. More
than one dbspace can be specified for this parameter. Simply list them as
comma-separated values.

The DBSPACETEMP parameter can contain dbspaces with a non-default page
size, but all of the dbspaces in the DBSPACETEMP list must have the same page
size.
450 IBM Informix Developer’s Handbook

When using a logged database, file activity in temporary dbspaces is not logged.
If the developer writes a query that requires tempspace, it is useful to include the
phrase WITH NO LOG, so that you can force the query to use the designated
temporary dbspace.

The SBSPACENAME parameter
The SBSPACENAME parameter specifies the name of the default sbspace. If
your database tables include smart-large-object columns that do not explicitly
specify a storage space, that data is stored in the sbspace that SBSPACENAME
specifies. The default sbspace is also used by the built-in encryption and
decryption functions to store BLOB or CLOB values.

An sbspace is a specialized type of dbspace, used for storing smartblobs and
binary large object dbspaces. (Binary data or some type of multidimensional data
is common to any datablade that uses R-tree indexing.)

When a create table statement includes a column that defines a CLOB or BLOB
object, the column information will be stored in an sbspace. If the PUT clause is
not specified in the create table statement when the defined CLOB or BLOB is
created, the default location where the column data will be stored is the sbspace
designated by the SBSPACENAME parameter.

If you are using IBM Informix with J/Foundation, you must provide a smart large
object where the database server can store the Java archive (.jar) files. These
.jar files contain the Java user-defined routines (UDRs). If you use Java UDRs,
you will want to create additional, separate sbspaces for storing smart large
objects.

The SBSPACETEMP parameter
The SBSPACETEMP parameter specifies the name of the default temporary
sbspace for storing temporary smart large objects without metadata or user-data
logging. If you store temporary smart large objects in a standard sbspace, the
metadata is logged. For more information about using temporary smart large
objects, see IBM Informix DataBlade API Programmer's Guide, V11.50,
SC23-9429.

The SYSSBSPACENAME parameter
The SYSSBSPACENAME parameter specifies the name of the sbspace in which
the database server stores statistics that the UPDATE STATISTICS statement
collects for certain user-defined data types. Normally, the database server places
statistics in the sysdistrib system catalog table.
 Chapter 13. Application development considerations 451

13.4.3 Limiters and limits

In addition to the storage location identifiers mentioned in 13.4.2, “Storage space
identifiers” on page 450, a number of parameters in the onconfig file impose
resource limits. Limits help the engine and system to utilize appropriate
resources rather than consume all the resources on the system and end up in a
crash. When the resources are no longer needed, they are released to be used
by other processes. These configuration limits can be adjusted in cooperation
with the database administrator, to accommodate for application concerns that
might need them.

The MULTIPROCESSOR parameter
The MULTIPROCESSOR parameter is used to determine the type of processing
method the engine will use. If it is set to 0, locking is done in a way that is suitable
for a single- processor computer, and processor affinity is ignored.

If the nearby onconfig file SINGLECPU_VP parameter is non-zero (On),
MULTIPROCESSOR and user-defined VPCLASSes (of any kind) will not work.

The VPCLASS parameter
The VPCLASS parameter allows you to designate a class of virtual processors
(VPs), create a user-defined VP, and specify the following information for it:

� The number of virtual processors that the database server should start
initially.

� The maximum number of virtual processors allowed for this class.

� The assignment of virtual processors to CPUs if processor affinity is available.

� The disabling of priority aging by the operating system if the operating system
implements priority aging.

You can have multiple VPCLASS parameter definitions. Use one VPLCLASS
reference for each class of virtual processor, one per line. Basic guidelines for
defining a VPLCASS are in IBM Informix Dynamic Server Administrator's
Reference, V11.50, SC27-3607.

Note: For information about writing user-defined statistics, refer to IBM
Informix User-Defined Routines and Data Types Developer's Guide, V11.5,
SC23-9438.

For information about providing statistics data for a smart BLOB column, refer
to IBM Informix DataBlade API Programmer's Guide, V11.50, SC23-9429.
452 IBM Informix Developer’s Handbook

For information about creating a user-defined virtual process, see IBM Informix
User-Defined Routines and Data Types Developer's Guide, V11.5, SC23-9438
or J/Foundation Developer's Guide, V11.5, SC23-9434.

The NETTYPE parameter
The NETTYPE parameter provides tuning options for the protocols that
DBSERVERNAME entries define in the sqlhosts file or registry. Each
DBSERVERNAME entry in the sqlhosts file or registry is defined in relation to
either the DBSERVERNAME parameter or the DBSERVERALIASES parameter
in the ONCONFIG file.

The NETTYPE configuration parameter describes a network connection as
follows:

� The protocol (or type of connection).

� The number of poll threads assigned to manage the connection.

� The expected number of concurrent connections.

� The class of virtual processor that will run the poll threads.

� You can specify a NETTYPE parameter for each protocol that you want the
database server to use.

� There is a special NETTYPE setting available if you want to enable the
database server to use multiplexed connections on UNIX. To do this, you
designate a NETTYPE with the value sqlmux, as in the following example.

NETTYPE sqlmux

The LOCKS parameter
The LOCKS parameter specifies the initial size of the lock table. Every SQL
session that connects to a database, and accesses tables and rows, generates a
lock. If the lock is non-exclusive, it is shared; if something needs to change, it is
exclusive. If there is an intent to change an object, it is an intent-exclusive lock.
The lock table holds an entry for each type of lock entry, and each of these lock
entries will have a small allocation in resident memory.

When the number of locks exceeds the lock table value, on 32-bit servers, the
database server will increase the size of the lock table by doubling the lock table
value, up to 99 times, or to the maximum value for the server allowance
(whichever comes first). On 32-bit servers, the maximum limit is 8,000,000 locks.

On 64-bit servers, the lock table limit is based on the maximum starting locks
value (500,000)+99 allowed increments of 1,000,000 locks for a total of
599,000,000 locks.
 Chapter 13. Application development considerations 453

The amount of memory storage per lock ranges from 100 to 200 bytes,
depending on the byte-word size and the platform.

The STACKSIZE parameter
The STACKSIZE parameter specifies the stack size for database server user
threads. Setting a value for STACKSIZE that is too large wastes virtual memory
space and can cause swap-space problems.

For 32-bit platforms, the default STACKSIZE value of 32 KB is sufficient for
non-recursive database activity. For 64-bit platforms, the recommended
STACKSIZE value is 64 KB.

In recursive SQL routines, the server checks for the possibility of stack-size
overflow and automatically expands the stack.

UDRs should increase the stack size for a routine as needed, using the stack
modifier in the CREATE FUNCTION statement.

The USELASTCOMMITTED parameter
This parameter specifies the isolation level whenever the LAST COMMITTED
feature of the COMMITTED READ isolation level is implicitly in effect. The LAST
COMMITTED feature can reduce the risk of locking conflicts between concurrent
transactions on tables that have exclusive row locks.

For the USELASTCOMMITTED parameter to work as expected, and given that a
table has been created or altered to have ROW as their locking granularity, the
following considerations also apply:

� If SET TRANSACTION is enabled with READ COMMITTED or READ
UNCOMMITTED, USELASTCOMMITTED will work.

� Tables created without any explicit lock mode setting will use the default
setting in DEF_TABLE_LOCKMODE.

The DEF_TABLE_LOCKMODE parameter
The DEF_TABLE_LOCKMODE parameter sets the lock mode for every newly
created table for all sessions connected to a logging or nonlogging database, and
has no effect on existing tables in the database.

Note: All lock table increments are kept in virtual memory. If the server engine
has limited shared memory, locks can become a memory resource drain.

Important: The USELASTCOMMITTED parameter works only with tables
that have been created or altered to have ROW as their locking granularity.
454 IBM Informix Developer’s Handbook

The specified value can be ROW, which sets the lock mode to ROW for every
new table connected to a database. If the specified value is PAGE (default), any
exclusive locked table remains inaccessible.

There is also an environment variable on the client side,
DEF_TABLE_LOCKMODE, which can be set with a lock mode value (PAGE or
ROW). The environment variable has rules of precedence involved if the
onconfig value is also set. For more information, see IBM Informix Dynamic
Server Administrator's Reference, V11.50, SC27-3607.

The DEADLOCK_TIMEOUT parameter
The DEADLOCK_TIMEOUT parameter specifies the maximum number of
seconds that a database server thread can wait to acquire a lock. Use this
parameter only for distributed queries that involve a remote database server.

The OPTCOMPIND parameter
The OPTCOMPIND parameter determines the method used by the engine to
process a query. All queries are optimized to run based on the guideline
recommended by this parameter, unless the developer forces a different
guideline using a directive.

When the OPTCOMPIND parameter is set to one of the following values, a given
query is optimized using the guideline assigned:

0 When appropriate indexes exist for tables in the query, the optimizer
chooses index scans, without consideration of the cost, over table
scans.

1 As long as the isolation is not Repeatable Read, the optimizer will
use cost based decisions. If Repeatable Read is in use, it behaves as
though OPTCOMPIND=0. Setting 1 is recommended for optimal
performance.

2 The optimizer uses cost to determine an execution path regardless of
isolation level. Index scans are not given preference; the optimizer
decision is purely based on cost. Setting 2 is the default if the
parameter is not set.

Note: This parameter applies only to distributed queries. There is a separate,
automated mechanism for deadlocks that are internal to a local database.

Note: Use the same OPTCOMPIND value in the development and in the
production environment. Performance and query behavior can have variations
if the OPTCOMIND value is different in the development and production
environments.
 Chapter 13. Application development considerations 455

The DIRECTIVES parameter
The DIRECTIVES parameter enables or disables the use of SQL directives. SQL
directives allow you to specify behavior for the query optimizer in developing
query plans for SELECT, UPDATE, and DELETE statements.

Set DIRECTIVES to 1, which is the default value, to enable the database server
to process directives.

Set DIRECTIVES to 0 to disable the database server from processing directives.

The MAX_PDQPRIORITY parameter
The MAX_PDQPRIORITY parameter limits the PDQ resources that the database
server can allocate to a given DSS query. MAX_PDQPRIORITY is a factor that is
used to scale the value of PDQ priority set by users. For example, if the database
administrator sets MAX_PDQPRIORITY to 80, and a user sets the
PDQPRIORITY environment variable to 50 and issues a query, the database
server silently processes the query with a PDQ priority of 40. The database
administrator can use the onmode utility to change the value of
MAX_PDQPRIORITY while the database server is online.

In Informix database server, PDQ resources include memory, CPU, disk I/O, and
scan threads. the MAX_PDQPRIORITY parameter lets the database
administrator run decision support concurrently with OLTP, without a
deterioration of OLTP performance. However, if the MAX_PDQPRIORITY
parameter is too low, the performance of decision- support queries can degrade.

Table 13-1 lists the MAX_PDQPRIORITY value that you can set.

Table 13-1 The MAX_PDQPRIORITY value

Note: Client programs have the option to set the IFX_DIRECTIVES
environment variable to ON or OFF to enable or disable processing of
directives by the database server. The setting of the IFX_DIRECTIVES
environment variable overrides the setting of the DIRECTIVES configuration
parameter. If you do not set the IFX_DIRECTIVES environment variable, all
sessions for a client inherit the database server configuration for processing
SQL directives.

Value Database Server Action

0 Turns off PDQ. DSS queries use no parallelism.

1 Fetches data from fragmented tables in parallel (parallel scans) but
uses no other form of parallelism.

100 Uses all available resources for processing queries in parallel.
456 IBM Informix Developer’s Handbook

13.4.4 Java configuration parameters

The configuration parameters listed in Table 13-2 allow you to use J/Foundation,
which incorporates an embedded Java Virtual Machine (JVM) on the database
server. For more information about these parameters, see J/Foundation
Developer's Guide, V11.5, SC23-9434.

Table 13-2 Java configuration parameters

For additional onconfig file parameters and how they relate to development, see
Appendix A, “Parameters in the onconfig file” on page 467.

An integer
between 1-100

Sets the percentage of the user-requested PDQ resources to be
allocated to the query.

Value Database Server Action

Parameter name Description

AFCRASH 0x10 When the 0x10 bit is on for AFCRASH, all the messages that the
JVM generates are logged into the JVM_vpid file, where vpid is
the process ID of the Java virtual processor. This file is stored in
the directory where the JVPLOG file is stored.

JVPDEBUG When set to 1, tracing messages are written to the JVPLOG file.

JVPHOME Directory where the classes of the IBM Informix JDBC Driver are
installed.

JVPLOGFILE Absolute path name for your Java VP log files.

JVPPROPFILE Absolute path name for the Java VP properties file.

JVPJAVAVM Libraries to use for the JVM.

JVPJAVAHOME Directory where the Java Runtime Environment (JRE) for the
database server is installed.

JVMTHREAD Thread package (green or native) to use for the JVM.

JVPVJAVALIB Path from JVPJAVAHOME to the location of the Java VM
libraries.

JVPCLASSPATH Initial Java class path setting.

VPCLASS jvp=n Number of Java virtual processors that the database server
should start.
 Chapter 13. Application development considerations 457

13.5 Working with your database administrator

There is an assumption throughout this book that our main audience is the
developer, with a distinctive separate role from the database administrator (DBA).
The database server administrator has the task of allocating and handling
resources effectively in the server side of a client -server environment. When a
performance issue occurs or when a transaction process is not working as it
should, you need to work with the database administrator to find a solution.
Present the problem to the database administrator, who might have a good idea
about a particular configuration area that might relate to the problem. There are a
few areas we can discuss here, which might help target the common problems
that developers experience.

Configuration parameters that affect logging
Checkpoints, logging, and page cleaning are necessary to maintain database
consistency. A direct trade-off exists between the frequency of checkpoints or the
size of the logical logs and the time that it takes to recover the database in the
event of a failure. A database administrator has to consider ways to reduce the
overhead for these activities based on the acceptable delay during recovery.
Sometimes these decisions are influenced by the behavior of the application.
Here we discuss the configuration parameters that effect logging.

LOGBUFF and PHYSBUFF
The LOGBUFF and PHYSBUFF configuration parameters effect logging I/O
activity because they specify the respective sizes of the logical-log and
physical-log buffers that are in shared memory. The size of these buffers
determines how quickly they fill and therefore how often they need to be flushed
to disk. If checkpoints tend to have long duration, you can seek further
information related to buffer tuning and checkpoint tuning information in the IBM
Informix Dynamic Server Performance Guide, V11.50, SC27-3618-00.

LOGFILES
The LOGFILES parameter specifies the number of logical-log files. This
parameter only becomes important with respect to the long transaction high
water mark (LTXHWM and LTXEHWM), if we are having trouble with transactions
that need to be rolled back. See the sections on DYNAMIC_LOGS, LTXHWM
and LTXEHWM, later in this chapter for more details.

LOGSIZE
Choose a log size based on how much logging activity occurs and the amount of
risk in case of catastrophic failure. If you cannot afford to lose more than an
hour's worth of data, create many small log files that each hold an hour's worth of
458 IBM Informix Developer’s Handbook

transactions. If your system is stable with high logging activity, choose larger logs
to improve performance.

You need to adjust the size of the logical log when your transactions include
simple large objects or smart large objects, as the following sections describe.

Estimating logical-log size when logging simple large objects
To obtain better overall performance for applications that perform frequent
updates of TEXT or BYTE data in blobspaces, reduce the size of the logical log.
Blobpages cannot be reused until the logical log to which they are allocated is
backed up. When TEXT or BYTE data activity is high, the performance impact of
more frequent checkpoints is balanced by the higher availability of free
blobpages.

When you use volatile blobpages in blobspaces, smaller logs can improve
access to simple large objects that must be reused. Simple large objects cannot
be reused until the log in which they are allocated is flushed to disk. In this case,
you can justify the cost in performance because those smaller log files are
backed up more frequently.

Estimating logical-log size when logging smart large objects
If you plan to log smart large object user data, you must ensure that the log size
is considerably larger than the amount of data being written. Smart large object
metadata is always logged even if the smart large objects are not logged.

Use the following guidelines when you log smart large objects:

� If you are appending data to a smart large object, the increased logging
activity is roughly equal to the amount of data written to the smart large
object.

� If you are updating a smart large object (overwriting data), the increased
logging activity is roughly twice the amount of data written to the smart large
object. The database server logs both the before-image and after-image of a
smart large object for update transactions. When updating the smart large
objects, the database server logs only the updated parts of the before and
after image.

Note: A backup process can hinder transaction processing if data is located
on the same disk as the logical-log files. It is better to keep logical logs on
separate disks from data, if possible. If extra disks are not an option for
separate logical log space, however, you can wait for periods of low user
activity before you back up the logical-log files.
 Chapter 13. Application development considerations 459

� Metadata updates affect logging less. Even though metadata is always
logged, the number of bytes that are logged is usually much smaller than the
smart large objects.

The DYNAMIC_LOGS parameter
The default value for the DYNAMIC_LOGS configuration parameter is 2, which
means that the database server allocates a new logical log file automatically after
the current log file when it detects that the next log file contains an open
transaction. The database server automatically checks whether the log after the
current log still contains an open transaction at the following times:

� Immediately after it switches to a new log file while writing log records (not
while reading and applying log records)

� At the beginning of the transaction cleanup phase which occurs as the last
phase of logical recovery

Logical recovery happens at the end of fast recovery and at the end of a cold
restore or roll forward. For more information about the phases of fast recovery,
see IBM Informix Dynamic Server Administrator's Guide, Version 11.50,
SC27-3606.

If you set DYNAMIC_LOGS to 0, the database server still checks whether the
next active log contains an open transaction when it switches log files. If it finds
an open transaction in the next log to be active, it issues the following warning:

WARNING: The oldest logical log file (%d) contains records from an open
transaction (0x%p), but the Dynamic Log Files feature is turned off.

The LTXHWM and LTXEHWM parameters
The LTXHWM parameter indicates how full the logical log is when the database
server starts to check for a possible long transaction and to roll it back.
LTXEHWM indicates the point at which the database server suspends new
transaction activity to locate and roll back a long transaction.

With the dynamic log file feature, long transaction high watermarks are no longer
as critical because the database server does not run out of log space unless you
use up the physical disk space available on the system. Under normal conditions,
you should keep the default values for LTXHWM and LTXEHWM. If a rollback is
ever needed, it can indicate a serious problem within an application.
460 IBM Informix Developer’s Handbook

After Version 9.4, LTXHWM and LTXEHWM are not in the onconfig.std file and
default to the following values, depending on the value of the DYNAMIC_LOGS
configuration parameter:

� With DYNAMIC_LOGS set to 1 or 2, the long transaction high watermark
default values are 80 for LTXHWM and 90 for LTXEHWM. Because the
database server does not run out of logs, other users can still access the log
during the rollback of a long transaction.

� With DYNAMIC_LOGS to 0, the default values are 50 for LTXHWM and 60 for
LTXEHWM.

You might want to change these default values for one of the following reasons:

� To allow other transactions to continue update activity (which requires access
to the log) during the rollback of a long transaction. In this case, you increase
the value of LTXEHWM to raise the point at which the long transaction
rollback has exclusive access to the log.

� To perform scheduled transactions of unknown length, such as large loads
that are logged. In this case, you increase the value of LTXHWM so that the
transaction has a chance to complete before reaching the high watermark.

13.5.1 Parameters for negotiation

While the database administrator should make final decisions for server
parameters, there are several parameters for which you need agreement to
achieve the most effective results.

The VPCLASS parameter
If you decide to use UDRs, a UDR can use the processing power in the CPU
class that users currently have at their disposal, or you can define the UDR with
its own processor class when you create the function. You define a new class of
virtual processors to isolate UDR execution from other transactions that execute
on the CPU virtual processors. This method is typically used when you write
UDRs to support user-defined data types. The class name that you specify in the
VPCLASS parameter must match the name specified in the CLASS modifier of
the CREATE FUNCTION statement.

Note: Because a user-defined CPU class is treated as a virtual processor, the
onconfig file SINGLE_CPU_VP parameter must be off (0) and
MULTIPROCESSOR must be on (1).
 Chapter 13. Application development considerations 461

Guidelines for setting VPCLASS:

� For uniprocessor computers, it is recommended that you use one CPU virtual
processor.

� VPCLASS cpu,num=1.

� For multiprocessor systems with four or more CPUs that are primarily used as
database servers, it is recommended that you set the VPCLASS num option to
one less than the total number of processors. For example, if you have four
CPUs, use the following specification:

VPCLASS cpu,num=3

Process priority aging
On some operating systems, priority aging occurs when the operating system
lowers the priority of long-running processes as they accumulate processing
time. Always disable the priority aging parameter of VPCLASS because it can
cause the performance of the database server processes to decline over time.
For further information, check the system notes for your database server.

Processor affinity
Processor affinity distributes the computation impact of CPU virtual processors
and other processes. On computers that are dedicated to the database server,
assigning CPU virtual processors to all but one of the CPUs achieves maximum
CPU utilization. On computers that support both database server and client
applications, you can bind applications to certain CPUs through the operating
system. By doing so, you effectively reserve the remaining CPUs for use by
database server CPU virtual processors, which you bind to the remaining CPUs
with the VPCLASS configuration parameter.

Set the aff option of the VPCLASS parameter to the numbers of the CPUs on
which to bind CPU virtual processors. For example, on an 8 CPU system, the
following VPCLASS setting assigns CPU virtual processors to processors 4 to 7,
and CPU’s 0, 1, 2, and 3 would be most available to the application:

VPCLASS cpu,num=4,aff=4-7

For additional methods that can be used with the VPCLASS, see IIBM Informix
Dynamic Server Administrator's Guide, V11.50, SC27-3606.

13.5.2 Monitoring isolation levels

As a general discovery tool, the onstat -g sql command can be used for
determining the isolation levels and lock modes for SQL statements actively
running against the server, their associated databases and any SQL errors that
might have occurred. The onstat -g sql command can also be run with an
462 IBM Informix Developer’s Handbook

optional session ID. The output contains the most recent and the current SQL
statements being run by the session.

13.5.3 Monitoring locks

The onstat -k command displays the current database locks held within the
system. The type of lock is determined by the logging mode, isolation levels, and
application design. Example 13-1shows the output of a sample onstat -k
command.

Example 13-1 The onstat -k command output

IBM Informix Dynamic Server Version 11.50.UC6 -- On-Line -- Up 03:55:17 --
15360 Kbytes
Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
a095f78 0 a4d9e68 0 HDR+S 100002 203 0
 1 active, 2000 total, 2048 hash buckets, 0 lock table overflows

The information in this output explains lock aspects. The type column explains
the lock types associated with each open lock. The abbreviations in the Type
column defines lock types as follows:

HDR Header
B Byte lock
S Shared
I Intent
X Exclusive
U Update
IX Intent exclusive
IS Intent-shared
SIX Shared, Intent exclusive
 Chapter 13. Application development considerations 463

The lock level is determined by the value of the tblsnum (tblspace ID) and the row
ID as show in Table 13-3 and Table 13-4.

Table 13-3 Determining lock level from Row ID

Table 13-4 Determining lock level from tblsnum

13.5.4 Monitoring user threads

The onstat -u command output reveals all of the current user threads running
on a server, though the output can be cryptic. In a highly active system, it is
normal to see user threads waiting on various conditions. These wait conditions
change rapidly as resources are engaged and released.

To identify a problem when a particular session is having a problem, monitor the
primary user threads by watching the flags over a few minutes. If the user thread
remains and the thread and wait conditions are unchanging, it provides a sign
that the time has come to focus in on a problem user thread.

Watch the flag values, then narrow down the problem by zeroing in the details of
the problem with additional onstat commands.

To monitor user threads:

1. Look at flag position 5: Primary threads (P) are the only ones of interest
(Ignore other user threads).

2. Look at flag position 1 (Wait conditions):

– B=buffer
– C=checkpoint
– G=write of the Logical Log buffer
– L=lock
– S=mutex
– T=transaction

If RowID Lock level is

Equals 0 Table

Ends in 00 Page

<6 digits & non zero Row

If tblsnum ID Lock level is

Equals 100002 Database

<10000 ER Pseudo lock
464 IBM Informix Developer’s Handbook

– X=transaction cleanup
– Y=condition

Watch for persistent L, S, T, or Y.

3. Look at flag position 3 (thread activity):

– A=DBSpace backup
– B=Begin work
– P=Preparing/prepared
– X=XA prepare
– C=Commiting/committed
– R=Aborting/aborted
– H=Heuristic aborting/aborted

Watch for P, X, C, R, H.

For more information about onstat commands and the meanings of the columns,
refer to:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.
adref.doc/ids_adr_0608.htm
 Chapter 13. Application development considerations 465

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.adref.doc/ids_adr_0608.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.adref.doc/ids_adr_0608.htm

466 IBM Informix Developer’s Handbook

Appendix A. Parameters in the onconfig
file

In 13.4, “Configuration options” on page 449, we discuss several parameters that
have a direct impact on developer methods and understandings. The list
provided in that section is limited to the direct-impact related parameters. It is
likely that application developers will not have much use for the remaining
onconfig parameters most of the time.

Normally, this remaining configuration information is a concern only for the DBAs.
Occasionally, there will come a time when performance of an application might
come into question. Sometimes slow performance is caused by the application,
and is under control of the developer. At other times it might be an onconfig file
setting in the IBM Informix server that requires adjustment.

Table A-1 on page 468 lists the parameters that might help developers and DBAs
to narrow the target area for further investigation. The table is not an exhaustive
list. Parameters that do not apply or that we have already discussed in this book
are not listed. For further information about any of these parameters, see IBM
Informix Dynamic Server Administrator's Reference, v11.50, SC27-3607.

From the developer’s point of view, it makes sense to categorize the configuration
parameters from a functional perspective, rather than a strict listing by name.
Toward this objective, the parameter names are listed in the table by function
groupings to help narrow down the parameter list that can be considered for an

A

© Copyright IBM Corp. 2010. All rights reserved. 467

area of specific interest. The functional groupings do not reflect specific naming
conventions used in the onconfig file.

Table A-1 Parameters in the onconfig file

Related function area Parameters

Storage Space ROOTNAME, ROOTOFFSET, ROOTSIZE, MIRROR,
MIRROROFFSET, LOGFILES, LOGSIZE,
DBSPACETEMP, SBSPACETEMP, SBSPACENAME,
SYSSBSPACENAME, CLEANERS, STAGEBLOB,
TBLTBLFIRST, TBLTBLNEXT, DATASKIP

Path locations ROOTPATH, JVPJAVALIB, JVPJAVAVM, MSGPATH,
PLOG_OVERFLOW_PATH

Buffer Movement BUFFERPOOL,PHYSBUFF, PHYSFILE

Memory Cache DD_HASHSIZE, DD_HASHMAX, DS_HASHSIZE,
DS_POOLSIZE, PC_HASHSIZE, PC_POOLSIZE,
STMT_CACHE, STMT_CACHE_HITS,
STMT_CACHE_SIZE, STMT_CACHE_NOLIMIT,
STMT_CACHE_NUMPOOL, PLCY_POOLSIZE,
PLCY_HASHSIZE, USRC_POOLSIZE,
USRC_HASHSIZE

Memory control RESIDENT, SHMVIRTSIZE, SHMADD, EXTSHMADD,
SHMTOTAL, SHMVIRT_ALLOCSEG,
SHMNOACCESS,VP_MEMORY_CACHE_KB,
ONLIDX_MAXMEM

Virtual processor and
connection

NETTYPE, LISTEN_TIMEOUT,
MAX_INCOMPLETE_CONNECTIONS, FASTPOLL,
MULTIPROCESSOR, VPCLASS, SINGLE_CPU_VP,
AUTO_AIOVPS, DIRECT_IO

SQL Control LOCKS, OPTCOMPIND, DIRECTIVES,
EXT_DIRECTIVES, OPT_GOAL, IFX_FOLDVIEW,
RA_PAGES, RA_THRESHOLD

Transaction control DEF_TABLE_LOCKMODE, BLOCKTIMEOUT,
TXTIMEOUT, HETERO_COMMIT,
DEADLOCK_TIMEOUT, DYNAMIC_LOGS, LOGBUFF,
LTXHWM, LTXEHWM, TEMPTAB_NOLOG,
AUTO_REPREPARE

Decision support DS_MAX_QUERIES, DS_TOTAL_MEMORY,
DS_MAX_SCANS, DS_NONPDQ_QUERY_MEM
468 IBM Informix Developer’s Handbook

Appendix B. Accommodating distributed
transactions

This appendix discusses the use of distributed transactions with an IBM Informix
database server.

B

© Copyright IBM Corp. 2010. All rights reserved. 469

B.1 Distributed transactions

A transaction is a series of actions performed as a single logical unit of work in
which either all of the actions are performed or none of them are.

A distributed transaction is a transaction that runs in multiple processes, usually
on several systems, and normally involves actions against two or more
databases. Each participant of a distributed transaction must agree to commit
the changes before the distributed transaction can be committed.

There are three core components on a distributed transaction:

� Application program (AP)

Application program implements the desired business function. It specifies a
sequence of operations that involve resources such as databases. An
application program participates in one or more units of work, and might
decide to commit or roll back each unit of work independently.

� Resource manager (RM)

Resource manager manages access to shared resources such as databases.
The resource manager provides the services to manage the data involved in
the distributed transaction.

� Transaction manager (TM)

Transaction manager manages global transactions and coordinates the
decision to commit them or roll them back ensuring their atomicity. The
transaction manager also coordinates recovery activities of the resource
managers when necessary, such as after a component failure.

The XA standards, set forth by the Open Group's X/Open Distributed Transaction
Processing (DTP) model, define the interfaces between the transaction manager,
the application program, and the resource manager in a DTP environment.
These interfaces are implemented in the Informix TP/XA Interface Library.

B.2 TP/XA Transaction Manager XA Interface Library

TP/XA is a library of functions that allows the IBM Informix database server act
as a resource manager in the X/Open DTP environment.The TP/XA library
facilitates communication between a third-party transaction manager and the
database server.

TP/XA is supplied with IBM Informix ESQL/C, which is included with Informix
Client Software Development Kit (Client SDK).
470 IBM Informix Developer’s Handbook

In addition to the TP/XA library, a header file xa.h, is supplied that contains the
definition for the functions and common structures, such as XID or xa_switch_t,
which are used by the transaction manager and resource manager.

Table B-1 describes the functions used to work with XA transactions.

Table B-1 TP/XA macro definitions

B.3 XA_TOOL ESQL/C sample

Example B-1is a basic ESQL/C application which demonstrates how to use
some of the TP/XA functions such as xa_prepare() and xa_rollback() to
perform operations with a distributed transaction.

Example B-1 The xa_tool.ec application

/***
 *
 * WARNING: USE OF THIS PROGRAM MAY HAVE UNDESIRABLE AFFECTS
 * TO THE DATABASE SERVER, INCLUDING DATA CORRUPTION!!
 *
 * TITLE: xa_tool.ec
 *

Function Description

xa_open() Initializes the resource manager (database server) for an XA
transaction

xa_close() Close a currently open resource manager

xa_start() Starts an XA transaction

xa_end() Dissociates from an XA transaction

xa_rollback() Tells the resource manager to roll back an XA transaction

xa_prepare() Asks the resource manager to prepare to commit an XA
transaction

xa_commit() Tells the resource manager to commit an XA transaction

xa_recover() Obtains a list of XIDs that are currently in a prepared or
heuristically completed state

xa_forget() Tells the resource manager to forget a heuristically completed
transaction

xa_complete() Test Completion of asynchronous XA Request. This function is
provided only for compliance with the X/Open XA Specification
 Appendix B. Accommodating distributed transactions 471

 * Compile with:
 * on UNIX systems:
 * esql -o xa_tool xa_tool.ec -lifxa
 * on Windows systems
 * esql xa_tool.ec
 *
 * This program will connect to a global transaction branch
 * and let the user manipulate the transaction.
 *
 * Usage:
 * xa_tool <fID> <gtl> <bql> <hex data>
 *
 * The fID, gtl, bql, and hex data should be provided from the
 * transaction desired to be manipulated. The information is
 * found by execution of the onstat -G command. Example output
 * of the onstat -G command:
 *
 * Global Transaction Identifiers
 * address flags fID gtl bql data
 * cb2a964 0x8442a 0 2 4 4D4E4F000000
 * 1 active, 128 total
 *
 * If transaction cb2a964 is the transaction that is desired
 * to be manipulated, then this program should be executed
 * with the following command:
 *
 * xa_tool 0 2 4 4D4E4F000000
 *
 *

 */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "xa.h"

extern struct xa_switch_t infx_xa_switch;

#define xa_open(info, rmid, flags) \
 ((*infx_xa_switch.xa_open_entry)(info,rmid,flags))
#define xa_start(gtrid,rmid, flags) \
 ((*infx_xa_switch.xa_start_entry)(gtrid,rmid,flags))
#define xa_rollback(gtrid,rmid, flags) \
 ((*infx_xa_switch.xa_rollback_entry)(gtrid,rmid,flags))
#define xa_commit(gtrid,rmid, flags) \
 ((*infx_xa_switch.xa_commit_entry)(gtrid,rmid,flags))
#define xa_rollback(gtrid,rmid, flags) \
 ((*infx_xa_switch.xa_rollback_entry)(gtrid,rmid,flags))
#define xa_end(gtrid,rmid, flags) \
 ((*infx_xa_switch.xa_end_entry)(gtrid,rmid,flags))
#define xa_prepare(gtrid,rmid, flags)\
 ((*infx_xa_switch.xa_prepare_entry)(gtrid,rmid,flags))
472 IBM Informix Developer’s Handbook

#define xa_close(info,rmid, flags)\
 ((*infx_xa_switch.xa_close_entry)(info,rmid,flags))
#define xa_forget(gtrid,rmid, flags)\
 ((*infx_xa_switch.xa_forget_entry)(gtrid,rmid,flags))
#define xa_recover(gtrid, count, rmid, flags)\
 ((*infx_xa_switch.xa_recover_entry)(gtrid,count,rmid,flags))

/* Doesn't matter what database is opened... */
#define OPEN_DATABASE "sysmaster"

/* Initialize the xid */
void
setup_myxid (XID *xid, int x_fID, int x_gtl, int x_bql, char* x_data)
{
 int ii, c;
 xid->formatID = x_fID;
 xid->gtrid_length = x_gtl;
 xid->bqual_length = x_bql;

 for(ii=0; ii<x_gtl+x_bql; ii++)
 if (sscanf(&x_data[ii*2], "%02x", &c) != 1)
 {
 printf("Invalid GTRID data!\n");
 exit(1);
 }
 else
 xid->data[ii] = (char) c;
}

void xa_tool(XID *xid)
{
 int choice = 0;
 int cc;

 while(choice != 'Q')
 {
 printf("\tP -- XA_PREPARE\n");
 printf("\tC -- XA_COMMIT\n");
 printf("\tR -- XA_ROLLBACK\n");
 printf("\tF -- XA_FORGET\n");
 printf("\tQ -- terminate program\n");
 printf("Enter Choice: ");
 choice = getchar();

 choice = toupper(choice);
 printf("%c\n\n", choice);

 switch(choice)
 {
 case 'P':
 printf("Executing XA_PREAPRE\n");
 if ((cc = xa_prepare(xid, 0, TMNOFLAGS)) != XA_OK)
 Appendix B. Accommodating distributed transactions 473

 {
 printf("XA_PREPARE failed with %d\n", cc);
 }
 else
 printf("... XA_PREPARE finished\n\n");
 break;
 case 'C':
 printf("Executing XA_COMMIT\n");
 if ((cc = xa_commit(xid, 0, TMNOFLAGS)) != XA_OK)
 {
 printf("XA_COMMIT failed with %d\n", cc);
 }
 else
 printf("... XA_COMMIT finished\n\n");
 break;
 case 'R':
 printf("Executing XA_ROLLBACK\n");
 if ((cc = xa_rollback(xid, 0, TMNOFLAGS)) != XA_OK)
 {
 printf("XA_ROLLBACK failed with %d\n", cc);
 }
 else
 printf("... XA_ROLLBACK finished\n\n");
 break;
 case 'F':
 printf("Executing XA_FORGET\n");
 if ((cc = xa_forget(xid, 0, TMNOFLAGS)) != XA_OK)
 {
 printf("XA_FORGET failed with %d\n", cc);
 }
 else
 printf("... XA_FORGET finished\n\n");
 break;
 case 'Q':
 break;
 default:
 printf("%c is not a valid option!\n\n", choice);
 choice = 0;
 }

if (choice != 'Q') {
 choice = getchar();
 choice = 0;
}

 }

}

int main(int arc, char *argv[])
{
 $int cc;
 XID xid;
 int xid_fID, xid_gtl, xid_bql;
 char xid_data[300];
474 IBM Informix Developer’s Handbook

 if (arc != 5)
 {
 printf("Error: Incorrect number of parameters.\n");
 printf("Usage: %s <fID> <gtl> <bql> <data>\n", argv[0]);
 exit(2);
 }
 printf("\n\n");

 xid_fID = atoi(argv[1]);
 xid_gtl = atoi(argv[2]);
 xid_bql = atoi(argv[3]);

 strcpy(xid_data, argv[4]);

 /* setup the XID which is used to identify the transaction */
 setup_myxid(&xid, xid_fID, xid_gtl, xid_bql, xid_data);

 /* establish connection to the database */
 printf("Calling xa_open ... \n");
 if ((cc = xa_open(OPEN_DATABASE, 0, TMNOFLAGS)) != XA_OK)
 {
 printf("xa_open failed with %d, sqlcode = %d\n", cc, SQLCODE);
 exit(1);
 }
 else
 printf("... xa_open finished\n\n");

 /** This is for xa_tool... **/
 xa_tool(&xid);

 /* close the connection */
 printf("Calling xa_close...\n");
 if ((cc = xa_close("", 0, TMNOFLAGS)) != XA_OK)
 {
 printf("xa_close failed with %d\n", cc);
 exit(1);
 }
 else
 printf("... xa_close finished\n\n");
}

You also can use the xa_tool example to complete unresolved transactions left
in the database server. Local transactions are rolled back automatically by the
Informix database server if the connection between the client application and the
database server is lost. This roll back occurs because the database server is in
direct control of the transaction.
 Appendix B. Accommodating distributed transactions 475

When using distributed transactions, the database server cannot resolved a
transaction automatically. The Transaction Manager is the only process in charge
of committing or aborting the global transaction. Thus, if there is a
communication error or a failure within the resource manager, there is a chance
of leaving unresolved transactions in the database server. These transactions
can be resolved using the xa_commit(), xa_rollback(), and xa_forget()
functions.

Example B-2 shows how to compile and use the xa_tool.ec program to rollback
an XA transaction left in the Informix database server.

Example B-2 The xa_tool.ec program output

D:\Infx\ids1150>onstat -G

IBM Informix Dynamic Server Version 11.50.FC6 -- On-Line -- Up 05:04:17

Global Transaction Identifiers
address flags isol timeout fID gtl bql data
83246d88 -L--G COMMIT 0 0 2 4 4D4E4F000000
 1 active, 128 total

D:\Infx\ids1150>
C:\work>esql -nologo xa_tool.ec
IBM Informix CSDK Version 3.50, IBM Informix-ESQL Version 3.50.TC7
xa_tool.c ...

C:\work>xa_tool 0 2 4 4D4E4F000000

Calling xa_open ...
... xa_open finished

 P -- XA_PREPARE
 C -- XA_COMMIT
 R -- XA_ROLLBACK
 F -- XA_FORGET
 Q -- terminate program
Enter Choice: R
R
Executing XA_ROLLBACK
... XA_ROLLBACK finished

 P -- XA_PREPARE
 C -- XA_COMMIT
 R -- XA_ROLLBACK
 F -- XA_FORGET
 Q -- terminate program
476 IBM Informix Developer’s Handbook

Enter Choice: q
Q
Calling xa_close...
... xa_close finished

C:\work>

For more information related to the TP/XA library, refer to the TP/XA Transaction
Manager XA Interface Library User Manual at:

http://publibfp.boulder.ibm.com/epubs/pdf/5193.pdf
 Appendix B. Accommodating distributed transactions 477

http://publibfp.boulder.ibm.com/epubs/pdf/5193.pdf

478 IBM Informix Developer’s Handbook

Related publications

We consider the publications that we list in this section particularly suitable for a
more detailed discussion of the topics that we cover in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks publications” on page 480. Note that some of the documents that we
reference here might be available in softcopy only.

� Embedding Informix Dynamic Server: An Introduction, SG24-7666

Other publications

The following publications are also relevant as further information sources:

� IBM Informix Dynamic Server Administrator’s Guide, v11.50, SC23-7748

� IBM Informix Guide to SQL: Reference, v11.50, SC23-7750

� Embedded SQLJ User’s Guide, Version 2.90, G251-2278

� IBM Informix Storage Manager Administrator’s Guide, v2.2, G229-6388

� IBM Informix Security Guide, v11.50, SC23-7754

� IBM Informix GLS User’s Guide, G229-6373

� IBM Informix Dynamic Server Administrator’s Reference, SC23-7749

� IBM Informix Guide to SQL: Syntax, v11.50, SC23-7751

� IBM Informix Guide to SQL: Tutorial, G229-6427

� IBM Informix Dynamic Server Performance Guide, v11.50, SC23-7757

� IBM Informix High-Performance Loader User’s Guide, v11.50, SC23-9433

� IBM Informix Migration Guide, SC23-7758

� IBM Informix JDBC Driver Programmer’s Guide, SC23-9421

� IBM Informix ESQL/C Programmer’s Manual, v3.50, SC23-9420

� IBM Data Server Provider for .NET Programmer’s Guide, SC23-9848
© Copyright IBM Corp. 2010. All rights reserved. 479

� IBM Informix Dynamic Server Installation Guide for UNIX, Linux, and Mac OS
X, GC23-7752

� IBM Informix DB-Access User’s Guide, SC23-9430

� IBM Informix ODBC Driver Programmer’s Manual, SC23-9423

� IBM Informix Dynamic Server Installation Guide for Windows, GC23-7753

� Guide to Informix MaxConnect, Version 1.1, G251-0577

� IBM Informix Backup and Restore Guide, v11.50, SC23-7756

� IBM Informix Dynamic Server Enterprise Replication Guide, v11.50,
SC23-7755

� “Expand transaction capabilities with savepoints in Informix Dynamic Server”
by Uday B. Kale in IBM developerWorks, 26 March 2009:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0903idssavepo
ints/index.html

Online resources

The following website is also relevant as further information sources:

� IBM Informix Dynamic Server v11.50 Information Center:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

How to get IBM Redbooks publications

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks
publications, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
480 IBM Informix Developer’s Handbook

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0903idssavepoints/index.html
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Index

Symbols
.4cf extension 418
.ec 128
.ecp 128
.NET connection string attributes

Client_Locale 259
Connection Lifetime 259
DB_LOCALE 259
DELIMIDENT 259
Enlist 259
Fetch Buffer Size 260
Host 260
Max Pool Size 260
OPTOFC 260
Packet Size 260
Pooling 260
PWD 260
Skip Parsing 260
UserDefinedTypeFormat 260
XCL 260

Numerics
4GL 15

A
access method 333
ACE Report Writer 9
ad hoc queries 7
adapter script 370
ADO interface

IAccessor 220
IColumnsInfo 220
ICommand 220
IDBCreateCommand 220
IDBCreateSession 220
IDBDataSourceAdmin 220
IDBProperties 220
IErrorLookup 220
IGetDataSource 220
IRowsetIdentity 220
ISessionProperties 220
ITransaction 220
© Copyright IBM Corp. 2010. All rights reserved.
ADO object 217
adOpenDynamic cursor 224
adOpenForwardOnly cursor 224
adOpenKeyset cursor 224
adOpenStatic cursor 224
annotation 211
ANSI serializable 448
antlr-2.7.6.jar 193
Apache Web Server 295, 297, 299, 303
application programming interface 14
application-programming interface 35
attribute 190
authorized user 5
AutoCommit mode 171
AXIS2C_HOME 403

B
backup 330
begin work 140
BeginTransaction method 274
BeginTransaction() 265
bigint data type 80
bigserial data type 80
binary import routine 333
binary large object 450
binary receive routine 333
binary send routine 333
bind parameter 308
bladelet 359
BLOB 80, 178, 180, 232, 276, 314, 450
BOOLEAN 80
Boolean UDR 333
buffered logging 20
built-in data type 330
bulk load 9
byte 80
byte column 7
byte-range lock 443
byte-range locking 444

C
call level interface 15
CallableStatement object 173
 481

cast function 332
cast support function 348
certified file 183
character large object 350, 450
chunk 450
CLASSPATH environment variable 157
classpath environment variable 52, 195
CLI 15
CLI parameters

database 73
hostname 73
port 73
protocol 73

client connectivity 7
client locale 62
Client SDK 9, 11, 15, 21–22, 29, 34–38, 42, 58–59,
65–66, 70, 75, 117, 125, 127, 151, 156, 216–217,
222, 250, 254, 256, 293, 296, 328, 364–365, 435,
470
client_locale environment variable 150
CLOB 80, 178–180, 233, 276, 278, 450
collection 10
collection data type 145, 348
collection variable 145
commands

esql 14, 125–128, 130
commit work 140
committed read 448
compiler 130
complex data type 335
component object model 216
concentrator 5
concurrency 438
concurrent query 19
concurrent session 5
connection management 192
connection object 171
connection pooling 155
connection string 257
connection string attribute 221
connection_adapters directory 370
connectionstring property 264
constraint 190
controller 363
convention over configuration 384
cost factor 333
cost function 332
cursor behavior 62
cursor stability 447–448

customer object 190
customized routine 330

D
data access layer 190
Data accessibility 143
data consistency 8
data consumer 14
Data Definition Language (DDL) 134, 168, 198,
294, 310, 391
data logging 143
data management 7
Data Manipulation Language (DML) 198
data mart 7
data provider 14, 254
data query language 190
data source 155
data source name 61
data type extension 330
data warehouse 7
database driver 44
database extension 330
database instance name 449
database locale 62
database lock 442
database operation 76
datetime 80
db_locale 63
db_locale environment variable 150
db2cli.ini 73
db2jcc.jar 52, 194
db2jcc4.jar 52
db2sdriver.cfg configuration file 261
DbDataReader method 269
dbschema utility 395
dbspace 450
dbspacetemp parameter 450
deadlock 446
deadlock_timeout parameter 455
def_table_lockmode parameter 441, 454
delete 76
dependency list 337
directives parameter 456
dirty read isolation 445
discarded-logging 194
display environment variable 38
distinct 10, 80
distinct data type 330, 335
482 IBM Informix Developer’s Handbook

distributed transaction 20, 93, 447, 470
distributed transactions 154
distribution statistic 333
dmg format 26
dom4j-1.6.1.jar 194
DRDA protocol 156
DRDADEBUG trace 188
driver manager 11
driver package 44
drsoctcp 31
dyld_library_path environment variable 131
dynamic link library 350
dynamic sql 136
dynamic_logs configuration parameter 460

E
editions 2
element type 145
encryption 182
end-user routine 332
environment variable

ld_library_path 131–132, 353, 365
lib 132
libpath 131
shlib_path 131, 365

esql command 14, 125–128, 130
exception 206
exclusive lock 439
exclusive mode 438–439
execute into command 134
executeQuery() 168
executeUpdate() 168
export routine 333

F
fast data loading 7
fetch buffer size 62
filetoblob 144
finderr utility 14, 37, 126
flat file 9
flow-control extension 331
functional test file 16

G
gem utility 370
generator element 201
get diagnostics statement 149

get() method 206
GetIfxMonthSpan 270
global transaction 470
global transactions 447

H
header file 16, 471
Hibernate dialect 196
Hibernate service 195
Hibernate session instance 203
hibernate.cfg.xml 195
hibernate.property 195
hibernate3.jar 193
hibernate-jpa-2.0-api-1.0.0.Final.jar 193
HibernateUtil class 202
high availability clustering 3
high availability replication 19
host name 61
host variable 146
HQL criteria 209
HQL restriction 209
HTTP link 422

I
i4gl_func 408
IBM.Data.DB2 255
IBM.Data.Informix 255
ICommand interface 225
idssecuritylabel 80
ifx_lo_lock() 444
ifx_lo_open 82
ifx_lo_t 142
ifx_lo_write 82
IfxBlob GetIfxBlob() 265, 269
IfxClob GetIfxClob() 265, 269
IfxCommand 269
IfxCommand class 266
IfxCommand CreateCommand() 265
IfxCommand method 272
IfxConnection class 265
IfxConnection object 274
IfxDataReader 269
IfxDataReader ExecuteReader() 266
IfxDateTime class 283
IfxDateTime GetIfxDateTime() 269
IfxDateTime public method 284
IfxDecimal GetIfxDecimal 269
IfxDecimal object 287
 Index 483

IfxDecimal public method 287
ifxdotnettrace variable 293
IfxError 271
IfxException class 271
ifxjdbc.jar 194
IfxMonthSpan 270
ifxoledbc COM class ID 216
ifxoledbctrace environment variable 248
IfxParameter 273
IfxParameter CreateParameter() 266
IfxParameterCollection object 272
IfxTimeSpan GetIfxTimeSpan 270
IfxTransaction 265
IfxTransaction object 274
iifxoledbc.dll 216
iLogin utility 37, 117, 126, 217, 290
Implict invocation 334
incoming parameter 337
Informix classes 12
Informix Client Software Development Kit , see Cli-
ent SDK
Informix Connect 9, 34–35, 328
Informix OLE DB Provider 37
informixc.so 365
informixdir environment variable 21, 59, 127
informixserver 353
informixserver environment variable 133, 365
informix-sqli 164
inheritance 190
insert 76
installation directory 21
installation ini file 27
installIDSDriver command 44
int8 80
intent locks 439
intent-exclusive lock 439
intent-shared 439
interval day 80
interval day to hour 81
interval day to minute 81
interval day to second 81
interval hour 81
interval hour to minute 81
interval hour to second 81
interval minute 81
interval minute to second 81
interval month 81
interval second 81
interval year 81

interval year to month 81
Isolation Level 62, 70
isolation level 20, 438, 447, 463
ISupportErrorInfo interface 234
Iterator function 332

J
Java annotation 191
Java archive file 341
Java class file 195
Java compiler 195
Java interface 12
Java library 193, 195
Java Naming and Directory Interface 166
java property 195
Java runtime 166
Java virtual machine (JVM) 37, 157, 195, 340, 457
java_bindir environment variable 341
java_home environment variable 341
java_root environment variable 341
java.io.Serializable 12
java.lang.object 13
java.sql.ParameterMetaData 12
javassist-3.9.0.GA.jar 194
javax.sql extensions 163
javax.sql.ConnectionEventListener 12
javax.sql.ConnectionPoolDataSource 12
javax.sql.DataSource 12
javax.sql.PooledConnection 12
javax.sql.XADataSource 12
JDBC API interfaces 155
JDBC class 155
JDBC method 155
JDBC standard 8
jjdk_home environment variable 341
JNDI, see Java Naming and Directory Interface.
jre_home environment variable 341
jta-1.1.jar 194
JVM 37, 157, 195, 340, 457
jvp.log 347

K
key 441
Key lock 442
keystore file 183
key-value locking 442
484 IBM Informix Developer’s Handbook

L
library file 126
licensing metric 5
limited use socket 5
list 145
load() 206
load() method 206
loc_t 142
lock 438
lock duration 440
lock list 446
lock mode page 441
locks parameter 453
logbuff 458
logfiles parameter 458
logging mode 463
logical device 8
logical volume manager 8
logical-log buffer 20, 458
logical-log record 20
long identifier 10
loopback connection 8
LPAR 5
ltxehwm parameter 460
ltxhwm parameter 460
LU socket 6
lvarchar 81

M
make file 16
mapping 191
max_pdqpriority parameter 456
MaxBytes 277
memory addressability 2
messages files 16
method 190
method properties

position 277
ReferenceCount 277

mi_lo_lock() 444
migration 394
model 363
module 16
money 81
msgpath file 347
multimedia capability 8
multiplexed connection 18–19
multiplexer 5

multiprocessor parameter 452
multiset 145
mutexes 18
mutually exclusive 18

N
native-protocol 53
nchar 81
negator function 332
nettype parameter 453
network connection 18
nvarchar 81

O
obdcinst.ini file 66
object ExecuteScalar() 266
object file 126
object processing 191
object-orientated programming 190
object-relational mapper 363
ODBC data source 60
ODBC driver 59
ODBC driver configuration files

odbc 66
odbcinst.ini 66
sqlhosts 66

ODBC libraries
libifcli.a or libcli.a 66
libifcli.so or iclis09b.so 66
libifdrm.so or idmrs09a.so 66
libthcli.a 66
libthcli.so or iclit09b.so 66

odbc.ini file 66
ODBC/CLI driver 45
OLE DB consumer 216
OLE DB provider 216
OLE DB providers

DBTYPE_DBDATE 223
DBTYPE_DBTIME 223
DBTYPE_DBTIMESTAMP 224

olsoctcp 31
onconfig file 341
onconfig parameter

dbservername 449
jvpclasspath 341
jvphome 341
jvpjavahome 341
jvpjavalib 341
 Index 485

jvpjavavm 341
jvplog 347
jvplogfile 341
jvppropfile 341

oninit 18
opaque 10
opaque data type 330, 332, 335
OpenAdmin Tool (OAT) 9, 17, 295, 297–299
operator 333
operator function 332
operator-class function 332
optcompind parameter 19, 455
OUT parameter 173
outgoing parameter 337

P
packaging file 16
page level lock 441
page locking 442
parallel subquery 19
parallelism 19
parallelizable UDR 332
parsing 139
partition 5
path environment variable 127
path variable 59
persistence 191, 363
persistence data 190
persistence framework 190
persistence object 199
persistent connectivity layer 5
phantom read 448
physbuff configuration parameter 458
physical log image 20
physical-log buffer 458
pipe connection 18
placeholder 88, 308
Plain Old Java Objects (POJO) 199
POJO, see Plain Old Java Object (POJO).
polymorphism 190
precedence hierarchy 337
prepare statement 20
prepared statement 175
PreparedStatement object 169
preprocessor 10
primary key 201
priority aging 462
process memory 347

processor affinity 462
processor value unit 5
processor-based pricing 5
program_design_dbs 404
Project Object Model (POM) 194
public method 265
publish 402
pure-Java driver 53
pure-Java drivers 154

Q
query optimization 139
query plan 334
query-intensive analytical application 7

R
rails command 392
recovery 330
Redbooks Web site 480

Contact us xiv
regsvr32 tool 245
repeatable read 438, 448
resource manager 470
result set 173
rollback 21, 330, 447
rollback method 274
rollback work statement 140
row and collection functions

ifx_rc_count 106
ifx_rc_create 106
ifx_rc_delete 106
ifx_rc_describe 106
ifx_rc_fetch 106
ifx_rc_free 106
ifx_rc_insert 106
ifx_rc_isnull 106
ifx_rc_setnull 106
ifx_rc_typespec 106
ifx_rc_update 106

rowset 229
R-tree 358
Ruby/Informix Adapter 384

S
sbspacename parameter 451
sbspacetemp parameter 451
scaffold command 393
486 IBM Informix Developer’s Handbook

scalability 6, 330
scalable data warehousing 7
sdk_home environment variable 341
secure sockets layer 19
secured connection method 19
select 76
selectivity function 332
serial8 81
server definition 31
server instance 18
server name 61
server_locale environment variable 150
service-oriented architecture 400
Session.createCiteria() 206
Session.createQuery() 206
Session.delete() method 210
Session.get() 205
Session.load() 205
Session.save() 205
SessionFactory class 202
set 145
set isolation 438
set lock mode 438
set transaction 438
setnet32.exe utility 21, 29–31, 42, 61, 66, 117, 126,
222, 245, 247, 449
shared library 67
shared lock 439
shared memory 18, 20
simple large objects 314
Simple Logging Facade for Java (SLF4J) 194–195
simple-logging 194
single install 5
single password CSM 19
single-user product version 8
SLF4J see Simple Logging Facade for Java.
slf4j-api-1.5.8.jar 194
slob method 377
smart blob space 95, 143, 178
smart lager objects 179
smart large object 10
smart large object functions

ifx_lo_alter 97
ifx_lo_close 97
ifx_lo_col_info 97
ifx_lo_create 97
ifx_lo_def_create_spec 97
ifx_lo_open 97
ifx_lo_read 97

ifx_lo_readwithseek 97
ifx_lo_seek 97
ifx_lo_specget_estbytes 97
ifx_lo_specget_extsz 97
ifx_lo_specget_flags 97
ifx_lo_specget_maxbytes 97
ifx_lo_specget_sbspace 97
ifx_lo_specset_estbytes 97
ifx_lo_specset_extsz 97
ifx_lo_specset_flags 97
ifx_lo_specset_maxbytes 97
ifx_lo_specset_sbspace 98
ifx_lo_stat 98
ifx_lo_stat_atime 98
ifx_lo_stat_cspec 98
ifx_lo_stat_ctime 98
ifx_lo_stat_refcnt 98
ifx_lo_stat_size 98
ifx_lo_tell 98
ifx_lo_truncate 98
ifx_lo_write 98
ifx_lo_writewithseek 98

smart large objects 178–180, 182, 232, 276, 278,
280–281, 315, 377, 383
soa_err_log log file 404
SOAP 422
socket connection 18
source file 126
source files 16
SQL communications area 148
SQL dialect 196
SQL optimization 197
sql_autocommit_off 91
sql_bigint 80–81
sql_bit 80
sql_c_binary 80
sql_ifmx_udt_blob 80
sql_ifmx_udt_clob 80
sql_infx_attr_lo_automatic 104
sql_infx_bigint 80
sql_infx_udt_fixed 80–81
sql_infx_udt_varying 81
sql_integer 81
sql_interval_day 80
sql_interval_hour 81
sql_interval_month 81
sql_interval_second 81
sql_interval_year 81
sql_longbinary 104
 Index 487

sql_longvarbinary 80, 96
sql_longvarchar 81, 96, 104
sql_timestamp 80
sqlca 148
sqlexec 30
SQLExecDirect() 82
SQLExecDirect() function 82
SQLGetDiagRec() 84
sqlhosts file 21, 27–29, 33–34, 42, 66, 127, 157,
365, 449, 453
sqlidebug trace 119, 151
sqliprt tool 120
sqlj.zip 52
sqlj4.zip 52
SQLSetConnectAttr() 91
SQLSTATE 149
stacksize parameter 454
standard data type 330
startup cost 337
Statement object 168
static SQL statement 136
statistics function 332
stored procedure 133
structured query language 154
subscribe 402
sysdistrib system catalog table 451
syslangauth table 331
syspgm4gl 406
sysprocauth table 331
sysprocbody table 331
sysprocedures table 331
sysroutinelangs table 331
syssbspacename parameter 451
system catalog table 331

T
table space 450
tar file 26
target_dir 408
target_file 408
temporary space 450
temporary table 450
text export routine 333
text import routine 333
Text input routine 333
text output routine 333
third-party vendor 11
thread 439

TimeSpan GetTimeSpan() 269
transaction 470
transaction control 330
transaction management 192
transient 210
transient object 210
translation library 62
translation option 62
Type 4 154
type constructor 145

U
UDR 173, 330–332, 334, 336–337, 340, 343, 345,
347–348, 352, 451
UDRManager 13
UDRMetaData 13
UDTManager 13
UDTMetaData 13
uncommitted data 448
unit of work 470
unresolved transaction 475
updatable lock 439
update 76
uselastcommitted 441, 454
user thread 464
user-defined aggregate 332
user-defined data type 335
user-defined routine , see UDR.
utilities

finderr 14, 37, 126
setnet32.exe 21, 29–31, 42, 61, 66, 117, 126,
222, 245, 247, 449

V
validity checking 139
version numbering convention 2
virtual processor 18
virtual server 5
virtual-processor process 352
VMB character 62
void Prepare() 266
vpclass parameter 452, 461

W
w4glc parameters

check 405
compile 405
488 IBM Informix Developer’s Handbook

deploy 405
force 405
generate 405
help 405
keep 405
package 405
silent 405
version 405

web server 363
web service description language 407
web service function 426
workload 3
ws_func 408
WSDL Path 426
wsdl_path 407

X
xa.h 471
XML configuration file 190
XML formatted file 195
XML mapping file 197
XML-based protocol 422
 Index 489

490 IBM Informix Developer’s Handbook

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 Inform

ix Developer’s Handbook

®

SG24-7884-00 ISBN 0738434701

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM Informix
Developer’s Handbook

Learn application
development with
supported APIs,
drivers, and interfaces

Understand Informix
supported
programming
environments

Follow practical
examples to develop
an Informix
application

IBM Informix is a low-administration, easy-to-use, and embeddable
database that is ideal for application development. It supports a
wide range of development platforms, such as Java, .NET, PHP, and
web services, enabling developers to build database applications in
the language of their choice. Informix is designed to handle RDBMS
data and XML without modification and can be extended easily to
handle new data sets.

This IBM Redbooks publication provides fundamentals of Informix
application development. It covers the Informix Client installation
and configuration for application development environments. It
discusses the skills and techniques for building Informix
applications with Java, ESQL/C, OLE DB, .NET, PHP, Ruby on Rails,
DataBlade, and Hibernate.

The book uses code examples to demonstrate how to develop an
Informix application with various drivers, APIs, and interfaces. It
also provides application development troubleshooting and
considerations for performance.

This book is intended for developers who use IBM Informix for
application development. Although some of the topics that we
discuss are highly technical, the information in the book might also
be helpful for managers or database administrators who are
looking to better understand their Informix development
environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Acknowledgements

	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction to IBM Informix
	1.1 Server options
	1.1.1 Informix servers

	1.2 Informix tools for developers
	1.2.1 Informix Connect
	1.2.2 Informix Client Software Development Kit
	1.2.3 4GL
	1.2.4 Ruby on Rails
	1.2.5 Informix DataBlade Developers Kit
	1.2.6 Informix Spatial DataBlade
	1.2.7 PHP on Informix

	1.3 Informix overview
	1.3.1 Architecture overview
	1.3.2 Informix developer environment
	1.3.3 Informix capabilities

	Chapter 2. Setting up an Informix development environment
	2.1 Server setup
	2.1.1 Planning for the installation
	2.1.2 Installing Informix Server
	2.1.3 Configuring Informix Server

	2.2 Client setup
	2.2.1 Informix Client options
	2.2.2 Installing and setting up Client SDK
	2.2.3 Setting up IBM Data Server drivers
	2.2.4 Setting up Informix JDBC

	Chapter 3. Working with the ODBC driver
	3.1 ODBC and Informix
	3.2 Setup and configuration
	3.2.1 IBM Informix ODBC Driver
	3.2.2 IBM Data Server Driver for ODBC and CLI
	3.2.3 Verifying connectivity

	3.3 Developing an ODBC application
	3.3.1 Connecting to the database
	3.3.2 Type mapping
	3.3.3 Performing database operations
	3.3.4 Handling special data types
	3.3.5 Error handling
	3.3.6 Troubleshooting

	Chapter 4. Working with ESQL/C
	4.1 Informix ESQL/C
	4.2 Setup and configuration
	4.3 Windows system configuration
	4.4 Developing an ESQL/C application
	4.4.1 Creating an ESQL/C application
	4.4.2 Performing database operations
	4.4.3 Data types mapping
	4.4.4 Handling special data types
	4.4.5 Exception handling
	4.4.6 Troubleshooting

	Chapter 5. Working with the JDBC drivers
	5.1 JDBC drivers for an Informix database
	5.1.1 IBM Informix JDBC Driver
	5.1.2 IBM Data Server Driver for JDBC and SQLJ

	5.2 Setup and configuration
	5.2.1 Configuration
	5.2.2 Verify connectivity with Informix JDBC Driver
	5.2.3 Verify connectivity with the Data Server Driver

	5.3 JDBC type mapping
	5.4 Performing database operations
	5.4.1 Connection to the database
	5.4.2 Manipulating data

	5.5 Informix additional features
	5.5.1 Batch inserts or updates and using ResultSet metadata
	5.5.2 BIGSERIAL data type
	5.5.3 Informix smart large objects
	5.5.4 Secure Socket Layer

	5.6 Typical errors
	5.6.1 Class not found errors
	5.6.2 Connectivity errors
	5.6.3 Syntax errors

	5.7 Tracing
	5.7.1 IBM Informix JDBC Driver
	5.7.2 IBM Data Server Driver for JDBC

	Chapter 6. IBM Informix with Hibernate
	6.1 Hibernate for Java
	6.1.1 Overview of Hibernate
	6.1.2 Hibernate concepts

	6.2 Setup and configuration
	6.2.1 Installation
	6.2.2 Configuration

	6.3 Using Hibernate with an Informix database
	6.3.1 Components of a Hibernate application
	6.3.2 Working with a Hibernate object
	6.3.3 Using annotations

	Chapter 7. Working with IBM Informix OLE DB Provider
	7.1 IBM Informix OLE DB Provider
	7.2 Setup and configuration
	7.2.1 Installation and setup
	7.2.2 Verifying connectivity

	7.3 Developing an OLE DB application
	7.3.1 Supported interfaces
	7.3.2 Connecting to database
	7.3.3 Type mapping
	7.3.4 Cursors
	7.3.5 Typical database operations

	7.4 Visual Basic, ADO.NET, and SQL Server
	7.4.1 OLE DB with Visual Basic
	7.4.2 ADO.NET and the OLEDB bridge
	7.4.3 SQL Server

	7.5 Troubleshooting and tracing
	7.5.1 Typical errors
	7.5.2 Tracing

	Chapter 8. Working with .NET data providers
	8.1 Informix and .NET data providers
	8.2 Setup and configuration
	8.2.1 IBM Informix .Net Provider
	8.2.2 IBM Data Server Provider for .NET
	8.2.3 Verifying connectivity

	8.3 Developing a .NET application
	8.3.1 Connecting to the database
	8.3.2 Data type mapping
	8.3.3 Performing database operations
	8.3.4 Handling Informix specific data types
	8.3.5 Troubleshooting
	8.3.6 Tracing

	8.4 Visual Studio Add-In for Visual Studio

	Chapter 9. Working with PHP
	9.1 Informix and PHP extensions
	9.2 Setup and configuration
	9.2.1 Installing OAT
	9.2.2 Verifying the PDO_INFORMIX setup
	9.2.3 Verifying the PDO setup
	9.2.4 Verifying connectivity

	9.3 Developing a PHP application
	9.3.1 Connecting to a database
	9.3.2 Performing database operations
	9.3.3 Handling complex data types
	9.3.4 Working with PHP extensions
	9.3.5 Exception handling
	9.3.6 Troubleshooting

	Chapter 10. User-defined routines
	10.1 An overview of UDRs and database extensions
	10.1.1 Considerations for UDRs
	10.1.2 About UDRs
	10.1.3 Considerations for extending data types

	10.2 Developing UDRs
	10.2.1 UDR examples in SQL
	10.2.2 UDRs in Java
	10.2.3 UDRs in C

	10.3 DataBlades and bladelets
	10.3.1 Configuration
	10.3.2 IBM Informix provided DataBlades
	10.3.3 Developing a bladelet routine

	Chapter 11. Working with Ruby on Rails
	11.1 A brief overview of Ruby on Rails
	11.1.1 Architecture of Ruby on Rails
	11.1.2 Ruby Driver and Rails Adapter

	11.2 Setup and configuration
	11.2.1 Ruby Informix driver
	11.2.2 Data Server Ruby driver
	11.2.3 Rails adapters

	11.3 Database operations
	11.4 Using the Rails Adapter with Ruby Informix
	11.4.1 Creating database objects
	11.4.2 Creating the Rails application
	11.4.3 Modifying the database configuration file
	11.4.4 Creating the Rails model and controllers
	11.4.5 Starting the Rails web server
	11.4.6 Demonstrating website application

	11.5 Using the Rails Adapter with IBM_DB
	11.5.1 Creating the Rails application
	11.5.2 Modifying the database configuration file
	11.5.3 Creating model, control, and view
	11.5.4 Migrating the model
	11.5.5 Starting the Rails web server
	11.5.6 Checking the application from website

	Chapter 12. Informix 4GL Web Services
	12.1 Basic concepts
	12.1.1 IBM Informix 4GL
	12.1.2 Service-oriented architecture and Web Services
	12.1.3 Web Services development
	12.1.4 Informix 4GL and Web Services
	12.1.5 Components

	12.2 Setup and configuration
	12.2.1 Prerequisites and supported platforms
	12.2.2 Environment

	12.3 Informix 4GL Web Services tools
	12.3.1 The w4glc Web Services compiler
	12.3.2 The w4gl utility
	12.3.3 Web Services Description Language Parser (wsdl_parser)
	12.3.4 I4GL Web Services process

	12.4 Developing a web service with I4GL
	12.4.1 Example I4GL function
	12.4.2 Host and application details
	12.4.3 Definition of the web service
	12.4.4 Generate the configuration file
	12.4.5 Deployment of the web service
	12.4.6 Packaging of the web service
	12.4.7 Starting the Axis2 application server
	12.4.8 Consuming the I4GL web service

	12.5 Consuming a web service with I4GL
	12.5.1 Web service to consume
	12.5.2 Compiling the wrapper code
	12.5.3 Using the web service from an I4GL application

	12.6 Troubleshooting
	12.6.1 Typical problems
	12.6.2 Tracing

	Chapter 13. Application development considerations
	13.1 Concurrency and locking
	13.1.1 Types of locks
	13.1.2 Lock duration
	13.1.3 Lock granularity

	13.2 Locking issues and performance
	13.2.1 Deadlocks

	13.3 Isolation levels
	13.4 Configuration options
	13.4.1 Server identification
	13.4.2 Storage space identifiers
	13.4.3 Limiters and limits
	13.4.4 Java configuration parameters

	13.5 Working with your database administrator
	13.5.1 Parameters for negotiation
	13.5.2 Monitoring isolation levels
	13.5.3 Monitoring locks
	13.5.4 Monitoring user threads

	Appendix A. Parameters in the onconfig file
	Appendix B. Accommodating distributed transactions
	B.1 Distributed transactions
	B.2 TP/XA Transaction Manager XA Interface Library
	B.3 XA_TOOL ESQL/C sample

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

